PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2589.
Published online 2010 September 18. doi:  10.1107/S1600536810036366
PMCID: PMC2983343

N-(Diethyl­carbamothio­yl)-4-nitro­benzamide

Abstract

In the title compound, C12H15N3O3S, the 4-nitro and carbonyl groups are nearly coplanar with the benzene ring [C—C—N—O = −175.72 (14) and C—C—C—O = 172.75 (14)°]. The diethyl­carbamothioyl group is twisted significantly from the plane of the benzene ring [C—N—C—N = −89.79 (15)°] with the S atom pointing away from each of these groups [C—N—C—S = 91.12 (14)°]. In the crystal, an inter­molecular N—H(...)O hydrogen bond, which forms an infinite polymeric chain along the c axis, and weak C—H(...)O and C—H(...)S hydrogen bonds are observed.

Related literature

For background to the use of thio­ureas in coordination chemistry, see: Burrows et al. (1999 [triangle]); Henderson et al. (2002 [triangle]), Schuster et al. (1990 [triangle]); Che et al. (1999 [triangle]); For their biological and catalytic activity, see: Saeed et al. (2009 [triangle], 2010a [triangle],b [triangle]); Maddani et al. (2010 [triangle]); Jung et al. (2008 [triangle]); For related literature, see: Zhang et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2589-scheme1.jpg

Experimental

Crystal data

  • C12H15N3O3S
  • M r = 281.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2589-efi1.jpg
  • a = 6.884 (5) Å
  • b = 19.237 (5) Å
  • c = 10.146 (5) Å
  • β = 92.983 (5)°
  • V = 1341.8 (12) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 2.23 mm−1
  • T = 295 K
  • 0.52 × 0.41 × 0.35 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini Cu diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.769, T max = 1.000
  • 5616 measured reflections
  • 2790 independent reflections
  • 2507 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.115
  • S = 1.05
  • 2790 reflections
  • 178 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036366/vm2042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036366/vm2042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Thioureas are of significant interest in medicinal chemistry due to their biological activity as fungicides (Saeed et al., 2010a), anticancer (Saeed et al., 2010b), herbicides, rodenticides and phenoloxidase enzymatic inhibitors (Maddani et al., 2010). Recently, thiourea derivatives have found use in organocatalysis (Jung et al., 2008) and amino-thiourea derivatives as curing agents for epoxy resins (Saeed et al., 2009). Thioureas have a long history as ligand in coordination chemistry and coordinate to a metal via sulfur (Burrows et al., 1999). These hard and soft donor atoms provide a multitude of bonding possibilities (Henderson et al., 2002). Hydrogen bonding behavior of some acyl thioureas has been investigated and it is found that intramolecular hydrogen bonds between the carbonyl oxygen and a hydrogen atom on N' is common. The complexing capacity of thiourea derivatives has been reported in several papers (Schuster et al., 1990). Some acyl thioureas possess pesticidal activities and promote plant growth while some have a notable positive effect on the germination of maize seeds as well as on the chlorophyll contents in seedling leaves (Che et al., 1999). With the simultaneous presence of S, N and O electron donors, the versalitility and interesting behavior of acyl thioureas as building blocks in polydentate ligands for metal ions have become a topic of interest in the last few years. It has been reported that substituted acyl thiourea ligands might act as monodentate sulfur donors, bidentate oxygen and nitrogen donors. In continuation of our research on the structural modification of certain biologically active thiourea derivatives and their transition metal complexes with the purpose of enhancing their biological activity, we aimed to incorporate aliphatic and aromatic moieties in the substituted phenyl nucleus with thiourea functionality to obtain new functions with improved antimicrobial profile. In view of the importance of thiourea derivatives, the crystal structure of the title compound is reported.

In the title compound, C12H15N3O3S the 4-nitro (C3/C4/N1/O2 = -175.72 (14)°) and carbonyl (C2/C1/C7/O3 = 172.75 (14)°) groups are nearly co-planar to the benzene ring. The N-(diethylcarbamothioyl) group is significantly twisted from the plane of the benzene ring (C7/N2/C8/N3 = -89.79 (15)°) with the S1 atom pointing away from each of these moieties (C7/N2/C8/S1 = 91.12 (14)°). Bond distances (Allen et al., 1987) and angles are in normal ranges. An N—H···O hydrogen bond which forms an infinite polymeric chain along the c axis and weak C—H···O and C—H···S hydrogen bond intermolecular interactions are observed (Table 1) and contribute to crystal packing (Fig. 1).

Experimental

A solution of 4-nitrobenzoyl chloride (0.01 mol) in anhydrous acetone (80 ml) and 3% tetrabutylammonium bromide (TBAB) as a phase-transfer catalyst (PTC) in anhydrous acetone was added dropwise to a suspension of dry ammonium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 45 min. After cooling to room temperature, a solution of diethylamine (0.01 mol) in anhydrous acetone (25 ml) was added dropwise and the resulting mixture refluxed for 2.5 h. Hydrochloric acid (0.1 N, 300 ml) was added, and the solution was filtered. The solid product was washed with water and purified by re-crystallization from ethyl acetate.

Refinement

The N–H atom length was set to 0.85Å (NH) and the H atom refined isotropically. All of the other H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.93Å (CH), 0.97Å (CH2), or 0.97Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18–1.20 (CH), 1.20 (CH2) or 1.50 (CH3)times Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of C12H15N3O3S showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound C12H15N3O3S viewed down the a axis. Dashed lines indicate N—H···O and weak C—H···O hydrogen bonds.

Crystal data

C12H15N3O3SF(000) = 592
Mr = 281.33Dx = 1.393 Mg m3
Monoclinic, P21/cMelting point: 434 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 6.884 (5) ÅCell parameters from 4133 reflections
b = 19.237 (5) Åθ = 4.6–77.2°
c = 10.146 (5) ŵ = 2.23 mm1
β = 92.983 (5)°T = 295 K
V = 1341.8 (12) Å3Block, pale yellow
Z = 40.52 × 0.41 × 0.35 mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini Cu diffractometer2790 independent reflections
Radiation source: Enhance (Cu) X-ray Source2507 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 77.4°, θmin = 4.9°
ω scansh = −8→8
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −17→24
Tmin = 0.769, Tmax = 1.000l = −12→12
5616 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.078P)2 + 0.1589P] where P = (Fo2 + 2Fc2)/3
2790 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.38042 (6)0.89794 (2)0.52976 (4)0.05321 (16)
O10.2051 (3)0.42290 (7)0.69201 (14)0.0818 (5)
O20.1805 (2)0.40370 (6)0.48459 (14)0.0627 (3)
O30.4507 (2)0.73790 (6)0.35424 (9)0.0547 (3)
N10.21185 (19)0.44183 (6)0.57929 (14)0.0461 (3)
N20.48161 (17)0.76526 (6)0.56885 (10)0.0364 (3)
H2B0.465 (3)0.7568 (10)0.650 (2)0.054 (5)*
N30.73455 (16)0.84093 (5)0.53139 (10)0.0350 (2)
C10.36465 (18)0.65019 (7)0.50551 (12)0.0337 (3)
C20.3617 (2)0.62603 (7)0.63527 (12)0.0387 (3)
H2A0.39460.65580.70510.046*
C30.3098 (2)0.55777 (7)0.66026 (13)0.0404 (3)
H3A0.30790.54120.74630.048*
C40.26114 (19)0.51499 (7)0.55432 (13)0.0366 (3)
C50.2607 (2)0.53744 (7)0.42543 (13)0.0417 (3)
H5A0.22650.50750.35610.050*
C60.3125 (2)0.60570 (7)0.40138 (13)0.0398 (3)
H6A0.31240.62190.31500.048*
C70.43282 (19)0.72156 (7)0.46945 (12)0.0358 (3)
C80.54477 (19)0.83458 (6)0.54204 (11)0.0343 (3)
C90.8723 (2)0.78196 (7)0.54253 (14)0.0419 (3)
H9A0.98590.79280.49370.050*
H9B0.81110.74110.50290.050*
C100.9359 (3)0.76598 (10)0.68374 (18)0.0599 (4)
H10A1.02910.72880.68580.090*
H10B0.82510.75230.73120.090*
H10C0.99410.80660.72410.090*
C110.8218 (2)0.90929 (7)0.50932 (14)0.0424 (3)
H11A0.94620.91210.55850.051*
H11B0.73800.94510.54230.051*
C120.8516 (3)0.92242 (10)0.36548 (17)0.0626 (5)
H12A0.91120.96710.35550.094*
H12B0.72820.92150.31690.094*
H12C0.93430.88700.33240.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0504 (2)0.0454 (2)0.0645 (3)0.01207 (15)0.00856 (18)0.01556 (17)
O10.1340 (14)0.0535 (7)0.0571 (8)−0.0315 (8)−0.0022 (8)0.0155 (6)
O20.0811 (9)0.0375 (6)0.0697 (8)−0.0083 (5)0.0065 (6)−0.0115 (5)
O30.0924 (9)0.0461 (6)0.0260 (5)−0.0114 (5)0.0046 (5)0.0040 (4)
N10.0475 (6)0.0360 (6)0.0549 (7)−0.0035 (5)0.0026 (5)0.0004 (5)
N20.0496 (6)0.0339 (5)0.0258 (5)−0.0056 (4)0.0048 (4)0.0039 (4)
N30.0428 (6)0.0290 (5)0.0333 (5)−0.0008 (4)0.0032 (4)0.0024 (4)
C10.0386 (6)0.0338 (6)0.0288 (6)0.0001 (5)0.0030 (4)−0.0007 (5)
C20.0521 (7)0.0360 (6)0.0282 (6)−0.0042 (5)0.0035 (5)−0.0018 (5)
C30.0515 (7)0.0386 (7)0.0313 (6)−0.0024 (5)0.0050 (5)0.0034 (5)
C40.0364 (6)0.0324 (6)0.0413 (6)−0.0001 (5)0.0043 (5)−0.0002 (5)
C50.0494 (7)0.0400 (7)0.0354 (6)−0.0023 (6)0.0004 (5)−0.0084 (5)
C60.0510 (7)0.0406 (7)0.0277 (6)−0.0011 (5)0.0007 (5)−0.0010 (5)
C70.0442 (6)0.0351 (6)0.0282 (6)0.0001 (5)0.0033 (5)0.0035 (5)
C80.0460 (7)0.0311 (6)0.0259 (5)−0.0003 (5)0.0034 (5)0.0032 (4)
C90.0457 (7)0.0342 (6)0.0463 (7)0.0043 (5)0.0085 (6)0.0004 (5)
C100.0665 (10)0.0546 (9)0.0576 (10)0.0181 (8)−0.0072 (8)0.0076 (8)
C110.0503 (8)0.0336 (6)0.0433 (7)−0.0077 (5)0.0013 (6)0.0024 (5)
C120.0816 (12)0.0578 (10)0.0486 (9)−0.0237 (9)0.0034 (8)0.0158 (7)

Geometric parameters (Å, °)

S1—C81.6632 (14)C3—H3A0.9300
O1—N11.203 (2)C4—C51.377 (2)
O2—N11.2191 (19)C5—C61.386 (2)
O3—C71.2228 (17)C5—H5A0.9300
N1—C41.4727 (17)C6—H6A0.9300
N2—C71.3423 (17)C9—C101.508 (2)
N2—C81.4331 (16)C9—H9A0.9700
N2—H2B0.85 (2)C9—H9B0.9700
N3—C81.322 (2)C10—H10A0.9600
N3—C111.4678 (17)C10—H10B0.9600
N3—C91.4792 (17)C10—H10C0.9600
C1—C61.3921 (18)C11—C121.506 (2)
C1—C21.3973 (18)C11—H11A0.9700
C1—C71.5022 (18)C11—H11B0.9700
C2—C31.3877 (19)C12—H12A0.9600
C2—H2A0.9300C12—H12B0.9600
C3—C41.3810 (19)C12—H12C0.9600
O1—N1—O2123.58 (14)N2—C7—C1117.30 (11)
O1—N1—C4118.24 (13)N3—C8—N2114.35 (11)
O2—N1—C4118.18 (13)N3—C8—S1126.68 (10)
C7—N2—C8120.45 (10)N2—C8—S1118.96 (10)
C7—N2—H2B124.5 (14)N3—C9—C10112.48 (12)
C8—N2—H2B114.6 (14)N3—C9—H9A109.1
C8—N3—C11120.62 (11)C10—C9—H9A109.1
C8—N3—C9123.73 (11)N3—C9—H9B109.1
C11—N3—C9115.64 (12)C10—C9—H9B109.1
C6—C1—C2119.65 (13)H9A—C9—H9B107.8
C6—C1—C7116.65 (12)C9—C10—H10A109.5
C2—C1—C7123.60 (11)C9—C10—H10B109.5
C3—C2—C1120.22 (12)H10A—C10—H10B109.5
C3—C2—H2A119.9C9—C10—H10C109.5
C1—C2—H2A119.9H10A—C10—H10C109.5
C4—C3—C2118.43 (12)H10B—C10—H10C109.5
C4—C3—H3A120.8N3—C11—C12112.06 (12)
C2—C3—H3A120.8N3—C11—H11A109.2
C5—C4—C3122.73 (13)C12—C11—H11A109.2
C5—C4—N1118.29 (12)N3—C11—H11B109.2
C3—C4—N1118.97 (12)C12—C11—H11B109.2
C4—C5—C6118.46 (12)H11A—C11—H11B107.9
C4—C5—H5A120.8C11—C12—H12A109.5
C6—C5—H5A120.8C11—C12—H12B109.5
C5—C6—C1120.50 (12)H12A—C12—H12B109.5
C5—C6—H6A119.8C11—C12—H12C109.5
C1—C6—H6A119.8H12A—C12—H12C109.5
O3—C7—N2121.57 (13)H12B—C12—H12C109.5
O3—C7—C1121.07 (12)
C6—C1—C2—C30.9 (2)C8—N2—C7—C1−178.94 (11)
C7—C1—C2—C3−175.39 (13)C6—C1—C7—O3−3.7 (2)
C1—C2—C3—C4−0.2 (2)C2—C1—C7—O3172.75 (14)
C2—C3—C4—C5−0.5 (2)C6—C1—C7—N2179.30 (12)
C2—C3—C4—N1178.08 (12)C2—C1—C7—N2−4.3 (2)
O1—N1—C4—C5−177.27 (16)C11—N3—C8—N2−177.53 (11)
O2—N1—C4—C52.9 (2)C9—N3—C8—N21.45 (17)
O1—N1—C4—C34.1 (2)C11—N3—C8—S11.47 (17)
O2—N1—C4—C3−175.72 (14)C9—N3—C8—S1−179.55 (10)
C3—C4—C5—C60.4 (2)C7—N2—C8—N3−89.79 (15)
N1—C4—C5—C6−178.16 (13)C7—N2—C8—S191.12 (14)
C4—C5—C6—C10.4 (2)C8—N3—C9—C10−84.81 (17)
C2—C1—C6—C5−1.0 (2)C11—N3—C9—C1094.21 (15)
C7—C1—C6—C5175.56 (13)C8—N3—C11—C12−96.35 (16)
C8—N2—C7—O34.1 (2)C9—N3—C11—C1284.59 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O3i0.85 (2)2.08 (2)2.915 (2)165.4 (19)
C2—H2A···O3i0.932.563.4671 (19)165
C6—H6A···S1ii0.932.983.824 (2)152

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2042).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Burrows, A. D., Colman, M. D. & Mahon, M. F. (1999). Polyhedron, 18, 2665–2671.
  • Che, D.-J., Li, G., Yao, X.-L., Wu, Q.-J., Wang, W.-L. & Zhu, Y. (1999). J. Organomet. Chem.584, 190–196.
  • Henderson, W., Nicholson, B. K., Dinger, M. B. & Bennett, R. L. (2002). Inorg. Chim. Acta, 338, 210–218.
  • Jung, S. H. & Kim, D. Y. (2008). Tetrahedron Lett.49, 5527–5530.
  • Maddani, M. R. & Prabhu, K. R. (2010). J. Org. Chem.75, 2327–2332. [PubMed]
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Saeed, S., Rashid, N., Hussain, R., Jones, P. G. & Bhatti, M. H. (2010b). Cent. Eur. J. Chem.8, 550–558.
  • Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010a). Eur. J. Med. Chem.45, 1323–1331. [PubMed]
  • Saeed, S., Rashid, N., Tahir, A. & Jones, P. G. (2009). Acta Cryst. E65, o1870–o1871. [PMC free article] [PubMed]
  • Schuster, M., Kugler, B. & Konig, K. H. (1990). Fresenius J. Anal. Chem.338, 717–720.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zhang, Y.-M., Wei, T.-B., Xian, L. & Gao, L.-M. (2004). Phosphorus Sulfur Silicon Relat. Elem.179, 2007–2013.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography