PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2546–o2547.
Published online 2010 September 11. doi:  10.1107/S1600536810035816
PMCID: PMC2983332

2-(4-Chloro­phen­yl)-6-meth­oxy­chroman-4-one

Abstract

In the title mol­ecule, C16H13Cl O3, the two aromatic rings form a dihedral angle of 65.3 (1)°. In the crystal structure, weak inter­molecular C—H(...)O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further packed into columns propagating in [100] by weak C—H(...)π inter­actions.

Related literature

For the pharmacological and alkyl­ating properties of chromenes (benzopyrans) and their derivatives and for their use as synthons for the synthesis of natural products, see: Brooks (1998 [triangle]); Chenera et al. (1993 [triangle]); Ellis et al. (1997 [triangle]); Gabor et al. (1988 [triangle]); Hatakeyama et al. (1988 [triangle]); Hyana & Saimoto, et al. (1987 [triangle]); Kooijman et al. (1984 [triangle]); Liu et al. (2007 [triangle]); Tang et al. (2007 [triangle]); Valenti et al. (1993 [triangle]). For related structures, see: Brito et al. (2008 [triangle]); Butcher et al. (2007 [triangle]); Li et al. (2007 [triangle]); Nallasivam et al. (2009 [triangle]); Hao et al. (2010 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2546-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO3
  • M r = 288.71
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2546-efi1.jpg
  • a = 5.0188 (3) Å
  • b = 12.0138 (7) Å
  • c = 12.3708 (7) Å
  • α = 108.035 (5)°
  • β = 98.379 (4)°
  • γ = 91.820 (5)°
  • V = 699.33 (7) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 2.46 mm−1
  • T = 293 K
  • 0.40 × 0.35 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Cu) detector
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.590, T max = 1.000
  • 4431 measured reflections
  • 2733 independent reflections
  • 2318 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.156
  • S = 1.62
  • 2733 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035816/cv2754sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035816/cv2754Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BN thanks the UGC for a SAP Chemical grant. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Chromenes (benzopyrans) and their derivatives exhibit a wide spectrum of biological and pharmacological properties including spasmolytic, antisterility, anti-arrhytmic, cardionthonic, antiviral, anticancer and alkylating properties (Gabor et al., 1988; Brooks, 1998; Valenti et al., 1993; Hyana & Saimoto, et al. 1987; Tang et al., 2007). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). Chromanone derivatives are important synthons for the synthesis of natural products such as brazillin, hematoxylin, ripariochromene and clausenin (Kooijman et al., 1984; Ellis et al., 1997; Chenera et al., 1993; Liu et al., 2007). The crystal structures of some rleated chromene derivatives viz., 7-hydroxy-4-methyl-2H-chromen-2-one monohydrate (Butcher et al., 2007), 5,7-dimethoxy-3-(4-methoxyphenyl)-4H-chromen-4-one (Li et al., 2007), 5,7-dimethoxy-2-phenyl-4H-chromen-4-one (Nallasivam et al., 2009), 5-hydroxy-7-methoxy-4H-chromen-4-one (Brito et al., 2008) and 3-methyl-4H-chromen-4-one (Hao et al., 2010) have been reported. In view of the importance of chromene derivatives, the crystal structure of the title compound, (I), is reported.

In (I), 4-chloro phenyl ring is found bonded to a 6-methoxy-2,3-dihydro-4H-chromen-4-one ring at C7 which is in an S configuration (Fig.1). The fused pyran ring in the benzopyran moiety adopts a slightly distorted envelope conformation with puckering parameters Q, θ and [var phi] of 0.4973 (16)A%, 122.19 (19)°, and 243.0 (2)°, respectively. The dihedral angles between the mean planes of the benzene and benzopyran rings is 65.3 (1)°. Bond distances (Allen et al., 1987) and angles are in normal ranges. Weak C—H···O hydrogen bond and C—H···π intermolecular interactions (where Cg1 is the centroid of ring C7—C12) are observed which contribute to crystal packing (Table 1).

Experimental

To a mixture of 1-(2-hydroxy-5-methoxyphenyl)ethanone (1.66 g, 0.01 mol) and p-chloro benzaldehyde (1.4 g, 0.01 mol) in 30 ml e thanol, 10 ml of 10% potassium hydroxide solution was added and stirred at 5–10 C° for 24 h (Fig. 2). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from DMF by the slow evaporation method and the yield of the compound was 75%. (m.p. 378 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.19–1.50Ueq(C).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Reaction scheme for (I).

Crystal data

C16H13ClO3Z = 2
Mr = 288.71F(000) = 300
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 5.0188 (3) ÅCell parameters from 2808 reflections
b = 12.0138 (7) Åθ = 4.5–74.2°
c = 12.3708 (7) ŵ = 2.46 mm1
α = 108.035 (5)°T = 293 K
β = 98.379 (4)°Block, colourless
γ = 91.820 (5)°0.40 × 0.35 × 0.20 mm
V = 699.33 (7) Å3

Data collection

Oxford Diffraction Xcalibur with a Ruby (Gemini Cu) detector diffractometer2733 independent reflections
Radiation source: Enhance (Cu) X-ray Source2318 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 10.5081 pixels mm-1θmax = 74.3°, θmin = 4.5°
ω scansh = −6→5
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −14→14
Tmin = 0.590, Tmax = 1.000l = −13→15
4431 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.62w = 1/[σ2(Fo2) + (0.072P)2] where P = (Fo2 + 2Fc2)/3
2733 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.44159 (18)1.09772 (6)1.41015 (7)0.1128 (4)
C150.1890 (4)0.52826 (16)0.74092 (15)0.0510 (4)
H140.18710.44690.72050.061*
C100.3876 (3)0.59907 (15)0.82937 (14)0.0445 (4)
C110.3896 (3)0.72078 (15)0.85979 (14)0.0457 (4)
C50.8624 (4)0.83325 (15)1.12894 (15)0.0486 (4)
C41.0438 (4)0.90581 (17)1.10279 (18)0.0588 (5)
H41.04510.90041.02620.071*
C31.2237 (5)0.98652 (19)1.1888 (2)0.0698 (6)
H31.34421.03561.17060.084*
C21.2221 (5)0.99320 (18)1.3011 (2)0.0703 (6)
C60.8664 (5)0.8411 (2)1.24293 (19)0.0714 (6)
H60.74590.79241.26170.098 (9)*
C11.0475 (6)0.9205 (2)1.3295 (2)0.0830 (7)
H11.05100.92471.40610.100*
C120.1994 (4)0.77156 (17)0.79994 (16)0.0547 (4)
H110.20340.85280.81830.066*
C14−0.0029 (4)0.57890 (18)0.68435 (16)0.0564 (5)
C130.0067 (4)0.70101 (19)0.71392 (17)0.0610 (5)
H12−0.12040.73520.67440.073*
C70.6684 (3)0.74364 (14)1.03660 (15)0.0454 (4)
H70.51490.72471.07030.055*
C90.5995 (3)0.54557 (14)0.88808 (15)0.0453 (4)
C80.7957 (3)0.63138 (15)0.98271 (15)0.0483 (4)
H8B0.85680.59581.04150.058*
H8A0.95210.64970.95170.058*
O10.5707 (2)0.79532 (10)0.94837 (11)0.0500 (3)
O20.6175 (3)0.43987 (11)0.86011 (12)0.0597 (4)
O3−0.2094 (3)0.51981 (15)0.59887 (13)0.0759 (5)
C16−0.2392 (5)0.3957 (2)0.5693 (2)0.0841 (7)
H15A−0.07930.36350.54250.126*
H15B−0.39240.36520.50940.126*
H15C−0.26610.37450.63580.126*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1341 (7)0.0652 (4)0.1049 (5)−0.0140 (4)−0.0625 (5)0.0169 (3)
C150.0503 (10)0.0501 (9)0.0500 (9)0.0020 (7)0.0083 (8)0.0124 (8)
C100.0406 (8)0.0485 (9)0.0462 (9)0.0040 (7)0.0085 (7)0.0170 (7)
C110.0419 (8)0.0491 (9)0.0480 (9)0.0028 (7)0.0056 (7)0.0192 (7)
C50.0470 (9)0.0455 (9)0.0520 (9)0.0090 (7)0.0023 (7)0.0157 (7)
C40.0606 (11)0.0546 (11)0.0586 (11)−0.0020 (9)0.0036 (9)0.0181 (9)
C30.0647 (13)0.0559 (11)0.0834 (15)−0.0077 (9)−0.0067 (11)0.0239 (10)
C20.0761 (14)0.0470 (10)0.0716 (13)0.0032 (9)−0.0259 (11)0.0129 (9)
C60.0796 (15)0.0738 (14)0.0572 (12)−0.0087 (11)0.0004 (10)0.0222 (10)
C10.1029 (19)0.0826 (16)0.0531 (12)−0.0017 (14)−0.0109 (12)0.0182 (11)
C120.0571 (11)0.0532 (10)0.0569 (10)0.0092 (8)0.0031 (8)0.0242 (8)
C140.0500 (10)0.0679 (12)0.0459 (9)0.0011 (8)0.0007 (7)0.0139 (8)
C130.0573 (11)0.0707 (12)0.0551 (10)0.0127 (9)−0.0032 (9)0.0251 (9)
C70.0432 (9)0.0458 (9)0.0496 (9)0.0051 (7)0.0050 (7)0.0194 (7)
C90.0425 (9)0.0446 (9)0.0515 (9)0.0056 (7)0.0108 (7)0.0175 (7)
C80.0414 (9)0.0490 (9)0.0555 (10)0.0071 (7)0.0040 (7)0.0195 (8)
O10.0508 (7)0.0434 (6)0.0553 (7)0.0009 (5)−0.0033 (5)0.0206 (5)
O20.0647 (8)0.0437 (7)0.0688 (8)0.0083 (6)0.0041 (6)0.0182 (6)
O30.0662 (9)0.0812 (11)0.0629 (9)−0.0018 (7)−0.0170 (7)0.0113 (8)
C160.0807 (16)0.0814 (16)0.0677 (14)−0.0132 (13)−0.0115 (12)0.0041 (12)

Geometric parameters (Å, °)

Cl1—C21.744 (2)C1—H10.9300
C15—C141.376 (3)C12—C131.370 (3)
C15—C101.402 (2)C12—H110.9300
C15—H140.9300C14—O31.366 (2)
C10—C111.392 (2)C14—C131.395 (3)
C10—C91.476 (2)C13—H120.9300
C11—O11.371 (2)C7—O11.449 (2)
C11—C121.393 (2)C7—C81.515 (2)
C5—C61.381 (3)C7—H70.9800
C5—C41.380 (3)C9—O21.219 (2)
C5—C71.503 (2)C9—C81.502 (2)
C4—C31.383 (3)C8—H8B0.9700
C4—H40.9300C8—H8A0.9700
C3—C21.367 (4)O3—C161.418 (3)
C3—H30.9300C16—H15A0.9600
C2—C11.373 (4)C16—H15B0.9600
C6—C11.383 (3)C16—H15C0.9600
C6—H60.9300
C14—C15—C10120.12 (17)C15—C14—O3125.69 (19)
C14—C15—H14119.9C15—C14—C13119.31 (17)
C10—C15—H14119.9O3—C14—C13115.00 (18)
C11—C10—C15119.75 (16)C12—C13—C14121.37 (17)
C11—C10—C9119.71 (15)C12—C13—H12119.3
C15—C10—C9120.51 (15)C14—C13—H12119.3
O1—C11—C10122.90 (15)O1—C7—C5108.13 (13)
O1—C11—C12117.23 (15)O1—C7—C8109.43 (14)
C10—C11—C12119.86 (16)C5—C7—C8112.84 (14)
C6—C5—C4118.74 (19)O1—C7—H7108.8
C6—C5—C7119.48 (18)C5—C7—H7108.8
C4—C5—C7121.74 (16)C8—C7—H7108.8
C5—C4—C3120.9 (2)O2—C9—C10122.50 (16)
C5—C4—H4119.5O2—C9—C8122.51 (16)
C3—C4—H4119.5C10—C9—C8114.97 (14)
C2—C3—C4119.2 (2)C7—C8—C9111.46 (14)
C2—C3—H3120.4C7—C8—H8B109.3
C4—C3—H3120.4C9—C8—H8B109.3
C3—C2—C1121.2 (2)C7—C8—H8A109.3
C3—C2—Cl1119.3 (2)C9—C8—H8A109.3
C1—C2—Cl1119.45 (19)H8B—C8—H8A108.0
C5—C6—C1120.8 (2)C11—O1—C7112.96 (12)
C5—C6—H6119.6C14—O3—C16117.73 (18)
C1—C6—H6119.6O3—C16—H15A109.5
C2—C1—C6119.1 (2)O3—C16—H15B109.5
C2—C1—H1120.4H15A—C16—H15B109.5
C6—C1—H1120.4O3—C16—H15C109.5
C13—C12—C11119.55 (18)H15A—C16—H15C109.5
C13—C12—H11120.2H15B—C16—H15C109.5
C11—C12—H11120.2
C14—C15—C10—C110.1 (3)C15—C14—C13—C12−1.5 (3)
C14—C15—C10—C9−178.06 (16)O3—C14—C13—C12178.56 (19)
C15—C10—C11—O1177.30 (15)C6—C5—C7—O1142.77 (18)
C9—C10—C11—O1−4.6 (2)C4—C5—C7—O1−39.4 (2)
C15—C10—C11—C12−1.9 (3)C6—C5—C7—C8−96.0 (2)
C9—C10—C11—C12176.21 (15)C4—C5—C7—C881.8 (2)
C6—C5—C4—C3−1.1 (3)C11—C10—C9—O2−175.33 (17)
C7—C5—C4—C3−178.99 (18)C15—C10—C9—O22.8 (3)
C5—C4—C3—C20.6 (3)C11—C10—C9—C83.1 (2)
C4—C3—C2—C10.7 (4)C15—C10—C9—C8−178.80 (15)
C4—C3—C2—Cl1−178.13 (16)O1—C7—C8—C9−57.54 (18)
C4—C5—C6—C10.4 (3)C5—C7—C8—C9−177.98 (14)
C7—C5—C6—C1178.3 (2)O2—C9—C8—C7−154.04 (17)
C3—C2—C1—C6−1.4 (4)C10—C9—C8—C727.6 (2)
Cl1—C2—C1—C6177.40 (19)C10—C11—O1—C7−26.7 (2)
C5—C6—C1—C20.9 (4)C12—C11—O1—C7152.50 (16)
O1—C11—C12—C13−177.23 (17)C5—C7—O1—C11−179.56 (13)
C10—C11—C12—C132.0 (3)C8—C7—O1—C1157.17 (18)
C10—C15—C14—O3−178.47 (18)C15—C14—O3—C163.6 (3)
C10—C15—C14—C131.6 (3)C13—C14—O3—C16−176.6 (2)
C11—C12—C13—C14−0.3 (3)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.982.503.260 (2)135
C8—H8B···Cg1ii0.972.693.5709 (18)151

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2754).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Brito, I., Bórquez, J., Loyola, L. A. & López-Rodríguez, M. (2008). Acta Cryst. E64, o285.
  • Brooks, G. T. (1998). Pestic. Sci.22, 41–50.
  • Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Narayana, B. & Samshad (2007). Acta Cryst. E63, o3412–o3413.
  • Chenera, B., West, M. L., Finkelstein, J. A. & Dreyer, G. B. J. (1993). J. Org. Chem.58, 5605–5606.
  • Ellis, G. P. (1997). Chromenes, Chromanones and Chromones. New York: John Wiley and Sons Inc.
  • Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.
  • Hao, L., Chen, J. & Zhang, X. (2010). Acta Cryst. E66, o1564. [PMC free article] [PubMed]
  • Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1022–1024.
  • Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  • Kooijman, H., Spek, A. L., Kleijn, H., van Maanen, H. L., Jastrzebski, J. T. B. H. & van Kozikowski, A. P. (1984). Acc. Chem. Res.17, 410–416.
  • Li, H.-Q., Xiao, Z.-P., Han, Y., Fang, R.-Q. & Zhu, H.-L. (2007). Acta Cryst. E63, o3923.
  • Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.
  • Nallasivam, A., Nethaji, M., Vembu, N., Ragunathan, V. & Sulochana, N. (2009). Acta Cryst. E65, o504–o505. [PMC free article] [PubMed]
  • Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  • Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des.8, 349–360. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography