PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1281–m1282.
Published online 2010 September 18. doi:  10.1107/S160053681003669X
PMCID: PMC2983329

Bis(di-2-pyridyl­methane­diol-κ3 N,O,N′)nickel(II) dibenzoate

Abstract

The title compound, [Ni(C11H10N2O2)2](C7H5O2)2, consists of an NiII ion coordinated by two tridentate chelating (2-py)2C(OH)2 ligands (py is pyrid­yl) and two benzoate anions. The NiII ion is located on a twofold rotation axis, and its geometry is distorted octa­hedral. The gem-diol ligand (2-py)2C(OH)2 adopts an η111 coordination mode. There are O—H(...)O hydrogen bonds between the gem-diol ligands and benzoate anions.

Related literature

For examples of inter­actions between transition metal ions and biologically active mol­ecules, see: Efthymiou et al. (2006 [triangle]); Daniele et al. (2008 [triangle]); Parkin (2004 [triangle]); Tshuva & Lippard (2004 [triangle]). For related structures of Cu(II) and Zn(II) benzoates, see: Lee et al. (2008 [triangle]); Yu et al. (2008 [triangle]); Park et al. (2008 [triangle]); Shin et al. (2009 [triangle]); Yu et al. (2010 [triangle]). For the di-2-pyridyl­ketone [(py)2CO] ligand, see: Papaefstathiou & Perlepes (2002 [triangle]); Stoumpos et al. (2009 [triangle]). For related structures, see: Wang et al. (1986 [triangle]); Li et al. (2005 [triangle]); Yu et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1281-scheme1.jpg

Experimental

Crystal data

  • [Ni(C11H10N2O2)2](C7H5O2)2
  • M r = 705.35
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1281-efi2.jpg
  • a = 24.065 (8) Å
  • b = 8.681 (3) Å
  • c = 17.718 (6) Å
  • β = 123.526 (5)°
  • V = 3085.7 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 173 K
  • 0.08 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.959, T max = 0.966
  • 8329 measured reflections
  • 3031 independent reflections
  • 1818 reflections with I > 2σ(I)
  • R int = 0.095

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.109
  • S = 1.01
  • 3031 reflections
  • 222 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003669X/dn2601sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003669X/dn2601Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Korea Ministry of the Environment ‘ET-Human resource development Project’ and the Cooperative Research Program for Agricultural Science & Technology Development (20070301–036-019–02) is gratefully acknowledged.

supplementary crystallographic information

Comment

The interaction of transition metal ions with biologically active molecules such as amino acids, proteins, sugars, fulvic acids and humic acids is of great importance in the biological systems (Daniele, et al., 2008; Parkin, 2004; Tshuva and Lippard, 2004). As models to examine the interaction, the study on the interaction of the transition metal ions with various acids such as benzoic acid has been intensively examined. Our group have also reported a variety of structures of copper(II) and zinc(II) benzoates with quinoxaline, 6-methylquinoline, 3-methylquinoline, trans-1-(2-pyridyl)-2-(4-pyridyl)ethylene, and di-2-pyridyl ketone (Lee, et al., 2008; Yu, et al., 2008; Park, et al., 2008; Shin, et al.,2009; Yu, et al., 2009a,b; Yu, et al.,2010).

Di-2-pyridyl ketone ((py)2CO) has been employed to form structurally interesting new complexes with 3 d-metal ions (Stoumpos, et al., 2009). While the neutral ligands (py)2C(OH)2 and (py)2C(OR)(OH) coordinate to the metal centres as N,N',O chelates (Papaefstathiou and Perlepes, 2002), water and alcohols (ROH) have been shown to add to the carbonyl group forming the ligands (2-py)2C(OH)2 [the gem-diol form of (2-py)2CO] and (2-py)2C(OR)(OH) [the hemiacetal form of (2-py)2CO], respectively (Efthymiou et al., 2006). The Ni(II) complexes of the neutral ligand, (py)2C(OH)2 have been characterized (Wang, et al., 1986; Li, et al., 2005; Yu, et al., 2009a,b), but no structure with a benzoate ion as the counter-ion has been reported. We report here another structure of NiII benzoate containing a neutral ligand (2-py)2C(OH)2.

The NiII atom is coordinated by two tridentate chelating (2-py)2C(OH)2 ligand to form a distorted octahedral geometry. The NiII ion is located on a two fold axis. The gem-diol ligand (2-py)2C(OH)2 adopts the coordination mode η111 (Fig.1). There are hydrogen bonds between the gem-diol hydrogen atoms and benzoate oxygen atoms.

Experimental

36.4 mg (0.125 mmol) of Ni(NO3)2.6H2O and 35.5 mg (0.25 mmol) of C6H5COONH4 were dissolved in 4 ml water and carefully layered by 4 ml solution of a mixture of acetone, methanol and ethanol (1/1/1) of di-2-pyridyl ketone ligand (46.1 mg, 0.25 mmol). Suitable crystals of the title compoundfor X-ray analysis were obtained in a month.

Refinement

H atoms were placed in calculated positions and treated as riding on their parent atoms with C—H distances of 0.93 Å (phenyl) and 0.84 Å (hydroxyl) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
Structure of the title complex with labeling scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are represented as small sphere of arbitrary radii and hydrogen bonds are shown as dashed line [Symmetry code: (i) -x+1, y, -z+3/2] ...

Crystal data

[Ni(C11H10N2O2)2](C7H5O2)2F(000) = 1464
Mr = 705.35Dx = 1.518 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 526 reflections
a = 24.065 (8) Åθ = 2.6–18.8°
b = 8.681 (3) ŵ = 0.69 mm1
c = 17.718 (6) ÅT = 173 K
β = 123.526 (5)°Block, colourless
V = 3085.7 (17) Å30.08 × 0.05 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3031 independent reflections
Radiation source: fine-focus sealed tube1818 reflections with I > 2σ(I)
graphiteRint = 0.095
[var phi] and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −29→28
Tmin = 0.959, Tmax = 0.966k = −10→9
8329 measured reflectionsl = −20→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.P)2] where P = (Fo2 + 2Fc2)/3
3031 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.54475 (8)0.75000.0218 (2)
O10.42807 (11)0.6969 (3)0.74041 (15)0.0272 (6)
H1O0.42940.71800.78770.041*
O20.31141 (11)0.6882 (3)0.65747 (15)0.0311 (7)
H2O0.30950.69160.70340.047*
N10.43794 (14)0.3935 (4)0.75897 (18)0.0240 (8)
N20.43061 (13)0.5602 (3)0.61309 (17)0.0224 (7)
C10.45080 (19)0.2545 (5)0.7972 (2)0.0295 (10)
H10.49450.21350.82500.035*
C20.4030 (2)0.1682 (5)0.7979 (2)0.0340 (10)
H20.41360.06960.82570.041*
C30.33914 (19)0.2273 (5)0.7573 (2)0.0336 (10)
H30.30530.16960.75640.040*
C40.32564 (18)0.3714 (5)0.7182 (2)0.0282 (10)
H40.28230.41470.69040.034*
C50.37576 (16)0.4519 (5)0.7200 (2)0.0231 (9)
C60.36850 (16)0.6119 (4)0.6785 (2)0.0244 (9)
C70.36976 (17)0.5939 (4)0.5939 (2)0.0215 (9)
C80.31530 (18)0.6127 (4)0.5068 (2)0.0278 (9)
H80.27250.63450.49490.033*
C90.32512 (19)0.5986 (4)0.4372 (2)0.0306 (10)
H90.28860.61170.37630.037*
C100.38729 (18)0.5658 (5)0.4555 (2)0.0326 (10)
H100.39440.55660.40810.039*
C110.43897 (17)0.5467 (5)0.5446 (2)0.0286 (9)
H110.48210.52300.55800.034*
O210.42695 (12)0.7889 (3)0.87550 (16)0.0364 (7)
O220.31909 (12)0.7353 (3)0.80877 (16)0.0409 (8)
C210.3730 (2)0.7889 (5)0.8723 (3)0.0306 (10)
C220.37566 (18)0.8581 (5)0.9521 (2)0.0272 (9)
C230.33218 (19)0.8072 (5)0.9755 (3)0.0329 (10)
H230.30110.72770.94110.039*
C240.3337 (2)0.8705 (5)1.0476 (3)0.0382 (11)
H240.30410.83391.06320.046*
C250.3776 (2)0.9862 (5)1.0971 (3)0.0396 (11)
H250.37761.03121.14590.047*
C260.42184 (18)1.0377 (5)1.0767 (3)0.0356 (10)
H260.45271.11701.11190.043*
C270.42110 (18)0.9730 (5)1.0042 (3)0.0342 (10)
H270.45191.00770.99030.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0214 (4)0.0260 (4)0.0186 (4)0.0000.0115 (3)0.000
O10.0272 (14)0.0340 (17)0.0230 (13)−0.0008 (13)0.0155 (12)−0.0029 (13)
O20.0259 (15)0.0429 (19)0.0280 (14)0.0089 (13)0.0170 (12)0.0053 (13)
N10.0235 (18)0.029 (2)0.0212 (16)0.0028 (15)0.0131 (14)0.0027 (15)
N20.0260 (17)0.0239 (19)0.0186 (15)0.0032 (15)0.0131 (13)0.0025 (15)
C10.034 (2)0.032 (3)0.021 (2)0.003 (2)0.0150 (18)0.006 (2)
C20.045 (3)0.031 (3)0.028 (2)−0.001 (2)0.021 (2)0.005 (2)
C30.039 (3)0.038 (3)0.027 (2)−0.016 (2)0.020 (2)−0.005 (2)
C40.027 (2)0.035 (3)0.023 (2)−0.003 (2)0.0144 (18)−0.007 (2)
C50.024 (2)0.029 (2)0.0179 (18)−0.003 (2)0.0125 (16)−0.0023 (19)
C60.0156 (19)0.031 (2)0.022 (2)−0.0003 (17)0.0067 (16)−0.0016 (19)
C70.023 (2)0.020 (2)0.023 (2)−0.0006 (16)0.0138 (17)0.0000 (16)
C80.026 (2)0.027 (2)0.027 (2)−0.0004 (18)0.0124 (18)−0.0006 (19)
C90.037 (2)0.033 (3)0.0168 (19)0.0050 (19)0.0116 (18)0.0022 (18)
C100.040 (2)0.037 (3)0.024 (2)0.007 (2)0.0197 (19)0.002 (2)
C110.030 (2)0.031 (2)0.026 (2)0.005 (2)0.0168 (17)0.001 (2)
O210.0333 (16)0.044 (2)0.0411 (16)−0.0030 (14)0.0264 (13)−0.0072 (14)
O220.0316 (17)0.062 (2)0.0295 (15)−0.0064 (15)0.0172 (13)−0.0119 (15)
C210.034 (2)0.032 (3)0.036 (2)0.004 (2)0.025 (2)0.004 (2)
C220.028 (2)0.031 (3)0.027 (2)0.0065 (19)0.0184 (18)0.003 (2)
C230.037 (2)0.032 (3)0.036 (2)0.002 (2)0.024 (2)0.002 (2)
C240.046 (3)0.046 (3)0.032 (2)0.002 (2)0.028 (2)0.002 (2)
C250.053 (3)0.039 (3)0.033 (2)0.014 (2)0.027 (2)0.003 (2)
C260.039 (2)0.030 (3)0.039 (2)0.002 (2)0.022 (2)−0.004 (2)
C270.036 (2)0.034 (3)0.042 (2)0.004 (2)0.028 (2)0.004 (2)

Geometric parameters (Å, °)

Ni1—N2i2.053 (3)C6—C71.525 (5)
Ni1—N22.053 (3)C7—C81.374 (5)
Ni1—N12.060 (3)C8—C91.383 (5)
Ni1—N1i2.060 (3)C8—H80.9500
Ni1—O1i2.109 (3)C9—C101.374 (5)
Ni1—O12.109 (2)C9—H90.9500
O1—C61.437 (4)C10—C111.377 (5)
O1—H1O0.8408C10—H100.9500
O2—C61.378 (4)C11—H110.9500
O2—H2O0.8405O21—C211.267 (4)
N1—C11.334 (4)O22—C211.247 (4)
N1—C51.353 (4)C21—C221.506 (5)
N2—C71.340 (4)C22—C271.388 (5)
N2—C111.340 (4)C22—C231.393 (5)
C1—C21.379 (5)C23—C241.373 (5)
C1—H10.9500C23—H230.9500
C2—C31.385 (5)C24—C251.368 (5)
C2—H20.9500C24—H240.9500
C3—C41.379 (5)C25—C261.373 (5)
C3—H30.9500C25—H250.9500
C4—C51.379 (5)C26—C271.393 (5)
C4—H40.9500C26—H260.9500
C5—C61.535 (5)C27—H270.9500
N2i—Ni1—N2172.49 (18)O2—C6—C7110.0 (3)
N2i—Ni1—N195.84 (11)O1—C6—C7104.5 (3)
N2—Ni1—N188.95 (11)O2—C6—C5113.4 (3)
N2i—Ni1—N1i88.95 (11)O1—C6—C5107.3 (3)
N2—Ni1—N1i95.84 (11)C7—C6—C5108.6 (3)
N1—Ni1—N1i100.79 (17)N2—C7—C8122.8 (3)
N2i—Ni1—O1i76.59 (10)N2—C7—C6112.6 (3)
N2—Ni1—O1i98.62 (10)C8—C7—C6124.5 (3)
N1—Ni1—O1i172.42 (10)C7—C8—C9117.6 (4)
N1i—Ni1—O1i78.91 (11)C7—C8—H8121.2
N2i—Ni1—O198.62 (10)C9—C8—H8121.2
N2—Ni1—O176.59 (10)C10—C9—C8120.5 (3)
N1—Ni1—O178.91 (11)C10—C9—H9119.7
N1i—Ni1—O1172.42 (10)C8—C9—H9119.7
O1i—Ni1—O1102.40 (14)C9—C10—C11118.1 (3)
C6—O1—Ni199.7 (2)C9—C10—H10120.9
C6—O1—H1O110.2C11—C10—H10120.9
Ni1—O1—H1O118.6N2—C11—C10122.3 (3)
C6—O2—H2O109.5N2—C11—H11118.8
C1—N1—C5118.7 (3)C10—C11—H11118.8
C1—N1—Ni1129.9 (2)O22—C21—O21124.8 (4)
C5—N1—Ni1111.5 (3)O22—C21—C22118.6 (3)
C7—N2—C11118.6 (3)O21—C21—C22116.6 (3)
C7—N2—Ni1112.1 (2)C27—C22—C23118.4 (4)
C11—N2—Ni1129.3 (2)C27—C22—C21121.3 (3)
N1—C1—C2122.4 (4)C23—C22—C21120.2 (4)
N1—C1—H1118.8C24—C23—C22120.7 (4)
C2—C1—H1118.8C24—C23—H23119.6
C1—C2—C3119.0 (4)C22—C23—H23119.6
C1—C2—H2120.5C25—C24—C23120.2 (4)
C3—C2—H2120.5C25—C24—H24119.9
C4—C3—C2118.9 (4)C23—C24—H24119.9
C4—C3—H3120.6C24—C25—C26120.6 (4)
C2—C3—H3120.6C24—C25—H25119.7
C3—C4—C5119.2 (4)C26—C25—H25119.7
C3—C4—H4120.4C25—C26—C27119.6 (4)
C5—C4—H4120.4C25—C26—H26120.2
N1—C5—C4121.9 (4)C27—C26—H26120.2
N1—C5—C6112.7 (3)C22—C27—C26120.4 (4)
C4—C5—C6125.5 (3)C22—C27—H27119.8
O2—C6—O1112.6 (3)C26—C27—H27119.8

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O210.841.702.537 (3)171
O2—H2O···O220.841.792.615 (4)167

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2601).

References

  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Daniele, P. G., Foti, C., Gianguzza, A., Prenesti, E. & Sammartano, S. (2008). Coord. Chem. Rev.252, 1093–1107.
  • Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236–2252.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Lee, E. Y., Park, B. K., Kim, C., Kim, S.-J. & Kim, Y. (2008). Acta Cryst. E64, m286. [PMC free article] [PubMed]
  • Li, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229–m231.
  • Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem.23, 249–274.
  • Park, B. K., Jang, K.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m1141. [PMC free article] [PubMed]
  • Parkin, G. (2004). Chem. Rev.104, 699–767. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shin, D. H., Han, S.-H., Kim, P.-G., Kim, C. & Kim, Y. (2009). Acta Cryst. E65, m658–m659. [PMC free article] [PubMed]
  • Stoumpos, C. C., Gass, I. A., Milios, C. J., Lalioti, N., Terzis, A., Aromi, G., Teat, S. J., Brechin, E. K. & Perlepes, S. P. (2009). Dalton Trans. pp. 307–317. [PubMed]
  • Tshuva, E. Y. & Lippard, S. J. (2004). Chem. Rev.104, 987–1012. [PubMed]
  • Wang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72.
  • Yu, S. M., Koo, K., Kim, P.-G., Kim, C. & Kim, Y. (2010). Acta Cryst. E66, m61–m62. [PMC free article] [PubMed]
  • Yu, S. M., Park, C.-H., Kim, P.-G., Kim, C. & Kim, Y. (2008). Acta Cryst. E64, m881–m882. [PMC free article] [PubMed]
  • Yu, S. M., Shin, D. H., Kim, P.-G., Kim, C. & Kim, Y. (2009a). Acta Cryst. E65, m1045–m1046. [PMC free article] [PubMed]
  • Yu, S. M., Song, Y. J., Kim, K. C., Kim, C. & Kim, Y. (2009b). Acta Cryst. E65, m678–m679. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography