PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1323.
Published online 2010 September 30. doi:  10.1107/S1600536810037906
PMCID: PMC2983328

Tetra­aqua­bis­[4-(pyrazin-2-ylsulfanylmethyl-κN 4)benzoato]cobalt(II)

Abstract

In the title compound, [Co(C12H9N2O2S)2(H2O)4], the CoII ion, lying on an inversion center, has an octa­hedral coordination involving two N atoms of two 4-(pyrazin-2-ylsulf­anylmeth­yl)benzoate ligands and four water mol­ecules. In the crystal, O—H(...)O hydrogen bonds between the coordinated water mol­ecules and uncoordinated carboxyl­ate O atoms, and weak π–π inter­actions [centroid–centroid distance = 4.105 (2) Å] between the benzene and pyrazine rings lead to a three-dimensional supra­molecular network.

Related literature

For general background to the network topologies and applications of coordination polymers, see: Han et al. (2003 [triangle]); Zhao, Hong et al. (2002a [triangle],b [triangle]); Zhao, Zou et al. (2004 [triangle]). For the synthesis and structure of a similar ligand, 4-(2-pyrimidinyl­thio­meth­yl)benzoic acid, see: Han et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1323-scheme1.jpg

Experimental

Crystal data

  • [Co(C12H9N2O2S)2(H2O)4]
  • M r = 621.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1323-efi1.jpg
  • a = 14.6561 (11) Å
  • b = 11.0666 (8) Å
  • c = 7.9973 (6) Å
  • β = 90.640 (1)°
  • V = 1297.03 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.844, T max = 0.879
  • 7415 measured reflections
  • 3097 independent reflections
  • 2131 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.126
  • S = 0.98
  • 3097 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037906/hy2354sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037906/hy2354Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the College of Chemistry and Chemical Engineering, Pingdingshan University, China.

supplementary crystallographic information

Comment

Crystal engineering based on metal–organic frameworks (MOFs) using asymmetric bridging ligands as building blocks has attracted much attention owing to their potential applications as second-order nonlinear optical (NLO) materials (Han et al., 2003; Zhao, Hong et al., 2002a,b). The combination of hydrogen bonding and π–π interactions has proved to be particularly useful for the assembly of MOFs (Zhao, Zou et al., 2004). Recently we have begun working on the architectures of polymeric structures containing a novel long and flexible monoanionic ligand with hybrid pyrazine and benzoate groups, namely 4-(2-pyrazinylthiomethyl)benzoic acid (Hpztmb). We report herein the synthesis and crystal structure of the title complex [Co(pztmb)2(H2O)4].

The title compound comprises of one CoII ion, two pztmb ligands and four coordinated water molecules (Fig. 1). The CoII ion lies on an inversion center in an octahedral coordination environment, with four O atoms from four coordinated water molecules in the equatorial positions and two N atoms from two different pztmb ligands in the axial sites (Table 1). The uncoordinated carboxylate O atoms and the coordinated water molecules form abundant strong hydrogen bonds (Table 2). In addition, two neighboring pztmb ligands are parallel and inversely arranged so that there is a weak π–π interaction [centroid–centroid distance = 4.105 (2) Å] between the benzene ring of one pztmb ligand and the pyrazine ring of the other one. Consequently, the hydrogen bonds and weak π–π interactions lead to a three-dimensional supramolecular network (Fig. 2).

Experimental

The synthesis method of Hpztmb is similar to that of Hpmtmb (Han et al., 2006) except that 2-mercaptopyrazine was used instead of 2-mercaptopyrimidine. A mixture of Co(NO3)2.6H2O (29 mg, 0.1 mmol) and Hpztmb (50 mg, 0.2 mmol) in 10 ml of H2O was sealed in a stainless-steel reactor with a Teflon liner and heated at 383 K for 72 h. A quantity of red single crystals were obtained after the solution was cooled to room temperature at a rate of 10 K h-1.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic) and 0.97 (CH2) Å and Uiso(H) = 1.2Ueq(C). Water H atoms were found in difference Fourier maps and initially included with a tight O—H restraint [0.85 (1) Å]. In the final refinement, the positions of the water H atoms were fixed, with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 2-x, 1-y, 2-z.]
Fig. 2.
Three-dimensional supramolecular structure of the title compound. H atoms have been omitted for clarity. Dashed lines indicate hydrogen bonds and weak π–π interactions.

Crystal data

[Co(C12H9N2O2S)2(H2O)4]F(000) = 642
Mr = 621.54Dx = 1.591 Mg m3Dm = 1.591 Mg m3Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1622 reflections
a = 14.6561 (11) Åθ = 3.1–25.8°
b = 11.0666 (8) ŵ = 0.88 mm1
c = 7.9973 (6) ÅT = 296 K
β = 90.640 (1)°Block, red
V = 1297.03 (17) Å30.20 × 0.18 × 0.15 mm
Z = 2

Data collection

Bruker APEXII CCD diffractometer3097 independent reflections
Radiation source: fine-focus sealed tube2131 reflections with I > 2σ(I)
graphiteRint = 0.045
[var phi] and ω scansθmax = 27.9°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −19→18
Tmin = 0.844, Tmax = 0.879k = −14→10
7415 measured reflectionsl = −5→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.98w = 1/[σ2(Fo2) + (0.0691P)2] where P = (Fo2 + 2Fc2)/3
3097 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co11.00000.50001.00000.02141 (16)
O10.17691 (15)0.4653 (2)0.4237 (3)0.0410 (6)
O20.11201 (13)0.3613 (2)0.6281 (2)0.0306 (5)
O1W1.01980 (14)0.4766 (2)1.2565 (2)0.0342 (5)
H1WA0.98240.51721.30730.051*
H1WB1.06590.47121.30690.051*
O2W0.94265 (16)0.66681 (19)1.0537 (3)0.0388 (6)
H2WB0.91840.66411.14550.058*
H2WA0.92830.72370.99930.058*
N10.86650 (16)0.4200 (2)1.0353 (3)0.0263 (5)
N20.70190 (17)0.2923 (2)1.0414 (3)0.0343 (6)
C10.79056 (19)0.4640 (3)0.9652 (4)0.0254 (6)
H10.79240.53920.91340.030*
C20.70864 (19)0.4004 (3)0.9674 (3)0.0262 (6)
C30.7784 (2)0.2507 (3)1.1130 (4)0.0373 (8)
H30.77640.17631.16690.045*
C40.8597 (2)0.3120 (3)1.1112 (4)0.0347 (8)
H40.91080.27841.16310.042*
C50.5369 (2)0.3367 (3)0.8688 (5)0.0406 (9)
H5A0.56430.26790.81360.049*
H5B0.52740.31490.98480.049*
C60.44575 (19)0.3625 (3)0.7878 (4)0.0278 (7)
C70.4284 (2)0.4607 (3)0.6838 (4)0.0313 (7)
H70.47450.51610.66290.038*
C80.3426 (2)0.4770 (3)0.6107 (4)0.0284 (7)
H80.33240.54220.53960.034*
C90.27219 (18)0.3965 (3)0.6431 (3)0.0237 (6)
C100.2892 (2)0.2995 (3)0.7504 (4)0.0300 (7)
H100.24240.24580.77520.036*
C110.3750 (2)0.2825 (3)0.8202 (4)0.0315 (7)
H110.38550.21660.88980.038*
C120.18071 (18)0.4100 (3)0.5590 (3)0.0254 (6)
S10.61446 (5)0.46202 (8)0.86052 (11)0.0350 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0161 (3)0.0262 (3)0.0219 (3)0.0013 (2)−0.00308 (19)0.0018 (2)
O10.0273 (12)0.0612 (17)0.0342 (12)−0.0043 (11)−0.0104 (10)0.0150 (11)
O20.0206 (11)0.0422 (13)0.0291 (11)−0.0056 (9)0.0006 (9)−0.0023 (9)
O1W0.0243 (11)0.0539 (16)0.0241 (10)0.0068 (10)−0.0071 (9)−0.0008 (9)
O2W0.0532 (15)0.0305 (13)0.0330 (12)0.0129 (11)0.0120 (11)0.0073 (10)
N10.0198 (12)0.0315 (15)0.0274 (12)−0.0017 (10)−0.0027 (10)0.0012 (11)
N20.0242 (14)0.0395 (17)0.0393 (16)−0.0048 (11)−0.0039 (12)0.0096 (12)
C10.0221 (15)0.0297 (16)0.0243 (14)0.0000 (11)−0.0029 (11)0.0007 (12)
C20.0205 (14)0.0357 (18)0.0222 (14)0.0002 (12)−0.0040 (11)−0.0019 (12)
C30.0318 (17)0.039 (2)0.0412 (19)−0.0025 (14)−0.0051 (14)0.0144 (15)
C40.0247 (16)0.040 (2)0.0389 (18)0.0008 (14)−0.0057 (13)0.0107 (15)
C50.0238 (17)0.044 (2)0.054 (2)−0.0065 (14)−0.0137 (15)0.0147 (16)
C60.0206 (14)0.0349 (18)0.0277 (15)−0.0008 (12)−0.0034 (12)0.0019 (13)
C70.0205 (15)0.0365 (18)0.0369 (17)−0.0060 (13)−0.0056 (12)0.0076 (14)
C80.0262 (15)0.0307 (19)0.0281 (15)−0.0023 (12)−0.0041 (12)0.0053 (12)
C90.0190 (14)0.0294 (17)0.0225 (14)0.0012 (11)−0.0025 (11)−0.0040 (12)
C100.0203 (15)0.0338 (18)0.0358 (17)−0.0057 (12)−0.0020 (12)0.0043 (13)
C110.0247 (15)0.0320 (18)0.0376 (17)−0.0008 (13)−0.0058 (13)0.0102 (14)
C120.0189 (14)0.0314 (17)0.0257 (15)−0.0010 (12)−0.0031 (11)−0.0074 (12)
S10.0230 (4)0.0354 (5)0.0464 (5)−0.0027 (3)−0.0123 (3)0.0062 (4)

Geometric parameters (Å, °)

Co1—O1W2.085 (2)C3—H30.9300
Co1—O2W2.075 (2)C4—H40.9300
Co1—N12.169 (2)C5—C61.505 (4)
O1—C121.244 (4)C5—S11.795 (3)
O2—C121.274 (3)C5—H5A0.9700
O1W—H1WA0.8200C5—H5B0.9700
O1W—H1WB0.7849C6—C71.390 (4)
O2W—H2WB0.8200C6—C111.390 (4)
O2W—H2WA0.7924C7—C81.392 (4)
N1—C11.333 (4)C7—H70.9300
N1—C41.345 (4)C8—C91.390 (4)
N2—C31.334 (4)C8—H80.9300
N2—C21.339 (4)C9—C101.395 (4)
C1—C21.392 (4)C9—C121.501 (4)
C1—H10.9300C10—C111.383 (4)
C2—S11.753 (3)C10—H100.9300
C3—C41.371 (4)C11—H110.9300
O2W—Co1—O2Wi180.000 (1)C4—C3—H3118.3
O2W—Co1—O1W87.66 (9)N1—C4—C3120.9 (3)
O2Wi—Co1—O1W92.34 (9)N1—C4—H4119.6
O2W—Co1—O1Wi92.34 (9)C3—C4—H4119.6
O2Wi—Co1—O1Wi87.66 (9)C6—C5—S1113.4 (2)
O1W—Co1—O1Wi180.000 (1)C6—C5—H5A108.9
O2W—Co1—N1i91.83 (9)S1—C5—H5A108.9
O2Wi—Co1—N1i88.17 (9)C6—C5—H5B108.9
O1W—Co1—N1i93.62 (9)S1—C5—H5B108.9
O1Wi—Co1—N1i86.38 (9)H5A—C5—H5B107.7
O2W—Co1—N188.17 (9)C7—C6—C11118.5 (3)
O2Wi—Co1—N191.83 (9)C7—C6—C5124.2 (3)
O1W—Co1—N186.38 (9)C11—C6—C5117.3 (3)
O1Wi—Co1—N193.62 (9)C6—C7—C8120.8 (3)
N1i—Co1—N1180.00 (13)C6—C7—H7119.6
Co1—O1W—H1WA109.5C8—C7—H7119.6
Co1—O1W—H1WB128.6C9—C8—C7120.5 (3)
H1WA—O1W—H1WB111.3C9—C8—H8119.8
Co1—O2W—H2WB109.5C7—C8—H8119.8
Co1—O2W—H2WA134.4C8—C9—C10118.7 (3)
H2WB—O2W—H2WA113.9C8—C9—C12120.9 (3)
C1—N1—C4116.6 (3)C10—C9—C12120.3 (3)
C1—N1—Co1123.1 (2)C11—C10—C9120.5 (3)
C4—N1—Co1119.6 (2)C11—C10—H10119.7
C3—N2—C2115.6 (3)C9—C10—H10119.7
N1—C1—C2121.8 (3)C10—C11—C6121.0 (3)
N1—C1—H1119.1C10—C11—H11119.5
C2—C1—H1119.1C6—C11—H11119.5
N2—C2—C1121.7 (3)O1—C12—O2123.9 (3)
N2—C2—S1120.1 (2)O1—C12—C9118.0 (3)
C1—C2—S1118.2 (2)O2—C12—C9118.1 (3)
N2—C3—C4123.4 (3)C2—S1—C5100.22 (15)
N2—C3—H3118.3
O2W—Co1—N1—C148.1 (2)S1—C5—C6—C11−165.9 (2)
O2Wi—Co1—N1—C1−131.9 (2)C11—C6—C7—C8−1.5 (5)
O1W—Co1—N1—C1135.9 (2)C5—C6—C7—C8178.6 (3)
O1Wi—Co1—N1—C1−44.1 (2)C6—C7—C8—C91.3 (5)
O2W—Co1—N1—C4−141.6 (2)C7—C8—C9—C100.1 (4)
O2Wi—Co1—N1—C438.4 (2)C7—C8—C9—C12−177.2 (3)
O1W—Co1—N1—C4−53.8 (2)C8—C9—C10—C11−1.4 (4)
O1Wi—Co1—N1—C4126.2 (2)C12—C9—C10—C11176.0 (3)
C4—N1—C1—C2−1.2 (4)C9—C10—C11—C61.2 (5)
Co1—N1—C1—C2169.4 (2)C7—C6—C11—C100.3 (5)
C3—N2—C2—C10.4 (4)C5—C6—C11—C10−179.8 (3)
C3—N2—C2—S1177.1 (2)C8—C9—C12—O123.7 (4)
N1—C1—C2—N20.6 (5)C10—C9—C12—O1−153.6 (3)
N1—C1—C2—S1−176.1 (2)C8—C9—C12—O2−158.2 (3)
C2—N2—C3—C4−0.7 (5)C10—C9—C12—O224.5 (4)
C1—N1—C4—C30.9 (5)N2—C2—S1—C5−6.9 (3)
Co1—N1—C4—C3−170.1 (3)C1—C2—S1—C5169.9 (2)
N2—C3—C4—N10.1 (5)C6—C5—S1—C2178.9 (2)
S1—C5—C6—C714.0 (4)

Symmetry codes: (i) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2ii0.822.002.801 (3)165
O1W—H1WB···O1iii0.781.872.653 (3)177
O2W—H2WA···O2iv0.791.922.713 (3)177
O2W—H2WB···O2ii0.821.892.695 (3)167

Symmetry codes: (ii) −x+1, −y+1, −z+2; (iii) x+1, y, z+1; (iv) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2354).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, L., Hong, M.-C., Wang, R.-H., Luo, J.-H., Lin, Z.-Z. & Yuan, D.-Q. (2003). Chem. Commun. pp. 2580–2581. [PubMed]
  • Han, L., Yuan, D.-Q., Wu, B.-L., Liu, C.-P. & Hong, M.-C. (2006). Inorg. Chim. Acta, 359, 2232–2240.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Y.-J., Hong, M.-C., Sun, D.-F. & Cao, R. (2002a). Inorg. Chim. Acta, 5, 565–568.
  • Zhao, Y.-J., Hong, M.-C., Sun, D.-F. & Cao, R. (2002b). J. Chem. Soc. Dalton Trans. pp. 1354–1357.
  • Zhao, W.-N., Zou, J.-W. & Yu, Q.-S. (2004). Acta Cryst. C60, m443–m444. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography