PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1280.
Published online 2010 September 18. doi:  10.1107/S1600536810036779
PMCID: PMC2983325

6,7-Dihydro-5H-1,4-diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium tris­(thio­cyanato-κN)cuprate(I)

Abstract

The title copper(I) salt, (C15H14N2)[Cu(NCS)3], exists as non-inter­acting cations and trigonal–planar anions. The cation is buckled, the r.m.s. deviation of the atoms passing through the phenanthroline portion being 0.16 Å. The CuI atom is displaced by 0.019 (2) Å out of the N3 triangle. The crystal studied was a non-merohedral twin with twin domains in an approximate ratio of 55:45.

Related literature

For a three-coordinate tris­(thio­cyanato)­cuprate(I) system, see: Song et al. (2008 [triangle]). For a study of the title cation, see: Liu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1280-scheme1.jpg

Experimental

Crystal data

  • (C15H14N2)[Cu(NCS)3]
  • M r = 460.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1280-efi1.jpg
  • a = 17.2687 (4) Å
  • b = 6.5825 (2) Å
  • c = 17.2702 (4) Å
  • β = 107.803 (2)°
  • V = 1869.12 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.52 mm−1
  • T = 100 K
  • 0.25 × 0.02 × 0.02 mm

Data collection

  • Bruker SMART APEX CCD-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.703, T max = 0.970
  • 15488 measured reflections
  • 4303 independent reflections
  • 3657 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.075
  • S = 0.99
  • 4303 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036779/zs2065sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036779/zs2065Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the National Natural Science Foundation of China (No. 20671083) and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

There is no report on a free, three-coordinate tris(thiocyanato)cuprate(I or II) ion in the structural literature. The potassium–benzene-18-crown-6 salt has the copper(I) atom in a three-coordinate environment but the sulfur ends of the thiocyanate ligands are also engaged in coordination (Song et al., 2008). The title salt (Scheme I, Fig. 1) represents the first example of a three-coordinate trithiocyanatocuprate(I) system; the salt exists as discrete cations and anions. On the other hand, the cation has also been documented only once in the structural literature (Liu et al., 2007). In the present salt, the phenanthroline portion is severely buckled (r.m.s. deviation of the plane passing through the atoms comprising the phenanthroline portion being 0.16 Å), with the nitrogen atoms deviating the largest distances (0.30, 0.30 Å).

Experimental

6,7-Dihydro-5H-[1,4]diazepino[1,2,3,4-lmn][1,10]phenanthroline-4,8-diium] dibromide was synthesized by reacting 1,3-dibromopropane with 1,10-phenanthroline monohydrate. A methanol solution (10 ml) of the salt (0.40 g, 1 mmol) was mixed with a water/DMF (1:4) solution (10 ml) of colorless copper(I) thiocyanate (0.12 g, 1 mmol). An excess of potassium thiocyanate (0.50 g, 5 mmol) was added. The solution was filtered and the solvent allow to evaporate slowly to furnish dark brown crystals of the cuprate salt.

Refinement

Hydrogen atoms were placed in calculated positions (C—H 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Figures

Fig. 1.
Displacement ellipsoid plot (Barbour, 2001) of [C15H14N2]2+ [Cu(NCS)3]2- at the 70% probability level.

Crystal data

(C15H14N2)[Cu(NCS)3]F(000) = 936
Mr = 460.06Dx = 1.635 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2549 reflections
a = 17.2687 (4) Åθ = 2.5–27.3°
b = 6.5825 (2) ŵ = 1.52 mm1
c = 17.2702 (4) ÅT = 100 K
β = 107.803 (2)°Prism, brown
V = 1869.12 (8) Å30.25 × 0.02 × 0.02 mm
Z = 4

Data collection

Bruker SMART APEX CCD-detector diffractometer4303 independent reflections
Radiation source: fine-focus sealed tube3657 reflections with I > 2σ(I)
graphiteRint = 0.048
ω scansθmax = 27.5°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→21
Tmin = 0.703, Tmax = 0.970k = −8→8
15488 measured reflectionsl = −22→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0347P)2] where P = (Fo2 + 2Fc2)/3
4303 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.36 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.58165 (3)0.28784 (6)0.33388 (3)0.01689 (10)
S10.30831 (6)0.32947 (13)0.33202 (7)0.0244 (2)
S20.81220 (7)0.20364 (14)0.55830 (7)0.0380 (2)
S30.57925 (7)0.23791 (13)0.06016 (7)0.0262 (2)
N10.06515 (15)0.3406 (4)0.21244 (15)0.0115 (5)
N2−0.03925 (18)0.2372 (4)0.31533 (17)0.0138 (6)
N30.47097 (19)0.3174 (4)0.33561 (18)0.0180 (6)
N40.67485 (17)0.2767 (4)0.42593 (16)0.0194 (5)
N50.58441 (19)0.2614 (4)0.2234 (2)0.0184 (7)
C10.1136 (2)0.3304 (4)0.1650 (2)0.0181 (7)
H10.17020.35540.18790.022*
C20.0825 (3)0.2840 (5)0.0826 (2)0.0215 (9)
H20.11810.26580.05080.026*
C30.0010 (3)0.2649 (5)0.0479 (2)0.0222 (9)
H3−0.02080.2456−0.00910.027*
C4−0.0516 (2)0.2736 (4)0.0965 (2)0.0158 (8)
C5−0.1377 (3)0.2680 (4)0.0618 (3)0.0219 (8)
H5−0.16110.25090.00480.026*
C6−0.1863 (3)0.2870 (5)0.1097 (3)0.0224 (8)
H6−0.24340.29950.08560.027*
C7−0.1528 (2)0.2885 (4)0.1957 (2)0.0181 (8)
C8−0.2032 (2)0.2962 (5)0.2473 (2)0.0216 (9)
H8−0.26040.30890.22400.026*
C9−0.1704 (2)0.2855 (5)0.3296 (3)0.0223 (9)
H9−0.20350.30440.36400.027*
C10−0.0880 (2)0.2466 (4)0.3622 (2)0.0176 (8)
H10−0.06560.22610.41920.021*
C11−0.0685 (2)0.2773 (4)0.2317 (2)0.0122 (7)
C12−0.0164 (2)0.2952 (4)0.1818 (2)0.0136 (7)
C130.09703 (17)0.4419 (4)0.29339 (17)0.0145 (6)
H13A0.05760.54640.29840.017*
H13B0.14870.51160.29650.017*
C140.11182 (19)0.2948 (5)0.3639 (2)0.0163 (6)
H14A0.11650.37120.41450.020*
H14B0.16370.22210.37110.020*
C150.04293 (18)0.1418 (5)0.34912 (18)0.0143 (7)
H15A0.04990.03690.31070.017*
H15B0.04600.07350.40110.017*
C160.4032 (2)0.3236 (4)0.3330 (2)0.0137 (7)
C170.7321 (2)0.2479 (5)0.4813 (2)0.0168 (6)
C180.5820 (2)0.2508 (4)0.1556 (2)0.0164 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0175 (3)0.01500 (17)0.0177 (3)0.00063 (19)0.00476 (13)0.00035 (18)
S10.0145 (5)0.0330 (5)0.0246 (5)0.0017 (4)0.0041 (4)−0.0004 (4)
S20.0355 (7)0.0243 (5)0.0366 (7)0.0063 (4)−0.0149 (4)−0.0040 (4)
S30.0273 (6)0.0356 (5)0.0150 (5)0.0062 (4)0.0055 (4)0.0010 (4)
N10.0122 (14)0.0123 (12)0.0096 (14)0.0015 (10)0.0027 (11)0.0013 (10)
N20.0158 (15)0.0101 (12)0.0168 (15)−0.0002 (10)0.0068 (12)−0.0003 (10)
N30.0205 (18)0.0194 (15)0.0140 (16)−0.0013 (12)0.0049 (13)−0.0032 (11)
N40.024 (2)0.0187 (14)0.017 (2)0.0009 (11)0.0080 (9)−0.0017 (11)
N50.0189 (17)0.0179 (14)0.0194 (18)0.0047 (11)0.0074 (14)0.0004 (11)
C10.0185 (19)0.0161 (17)0.023 (2)0.0050 (13)0.0118 (15)0.0040 (13)
C20.032 (2)0.0166 (18)0.021 (2)0.0041 (15)0.0149 (18)0.0035 (13)
C30.040 (3)0.0152 (15)0.012 (2)0.0002 (14)0.0082 (18)0.0010 (12)
C40.021 (2)0.0113 (14)0.0119 (19)0.0009 (12)0.0012 (15)0.0008 (11)
C50.028 (3)0.0134 (14)0.014 (2)−0.0009 (13)−0.0087 (16)0.0001 (13)
C60.018 (2)0.0174 (14)0.023 (3)−0.0020 (14)−0.0053 (16)0.0002 (14)
C70.015 (2)0.0088 (13)0.029 (2)−0.0001 (12)0.0046 (16)−0.0001 (13)
C80.013 (2)0.0176 (15)0.034 (2)−0.0019 (13)0.0062 (17)−0.0001 (14)
C90.021 (2)0.0186 (18)0.034 (3)−0.0001 (14)0.0197 (19)−0.0021 (15)
C100.023 (2)0.0155 (16)0.0165 (19)−0.0054 (13)0.0086 (16)−0.0009 (12)
C110.0148 (19)0.0092 (15)0.0106 (18)0.0025 (12)0.0009 (14)−0.0002 (12)
C120.0182 (19)0.0094 (15)0.0121 (18)0.0014 (12)0.0030 (14)0.0031 (11)
C130.0133 (16)0.0156 (15)0.0133 (16)−0.0012 (11)0.0022 (12)−0.0015 (11)
C140.0136 (19)0.0207 (16)0.0139 (19)−0.0030 (12)0.0032 (10)0.0031 (12)
C150.0132 (15)0.0165 (15)0.0130 (16)0.0020 (12)0.0038 (13)0.0043 (12)
C160.017 (2)0.0129 (16)0.0096 (17)0.0021 (12)0.0022 (13)−0.0002 (11)
C170.019 (2)0.0116 (17)0.022 (2)0.0000 (12)0.0097 (11)−0.0038 (13)
C180.0095 (18)0.0114 (15)0.027 (2)0.0013 (11)0.0027 (15)0.0000 (12)

Geometric parameters (Å, °)

Cu1—N41.886 (2)C4—C51.423 (5)
Cu1—N31.930 (3)C5—C61.353 (4)
Cu1—N51.930 (3)C5—H50.9500
S1—C161.634 (4)C6—C71.419 (6)
S2—C171.626 (3)C6—H60.9500
S3—C181.637 (4)C7—C111.400 (5)
N1—C11.340 (4)C7—C81.424 (5)
N1—C121.378 (4)C8—C91.361 (6)
N1—C131.494 (4)C8—H80.9500
N2—C101.336 (4)C9—C101.385 (6)
N2—C111.401 (4)C9—H90.9500
N2—C151.497 (4)C10—H100.9500
N3—C161.158 (4)C11—C121.429 (4)
N4—C171.161 (3)C13—C141.515 (4)
N5—C181.161 (5)C13—H13A0.9900
C1—C21.393 (5)C13—H13B0.9900
C1—H10.9500C14—C151.519 (4)
C2—C31.356 (6)C14—H14A0.9900
C2—H20.9500C14—H14B0.9900
C3—C41.413 (5)C15—H15A0.9900
C3—H30.9500C15—H15B0.9900
C4—C121.418 (5)
N4—Cu1—N3125.77 (14)C7—C8—H8119.6
N4—Cu1—N5123.83 (15)C8—C9—C10118.9 (3)
N3—Cu1—N5110.37 (9)C8—C9—H9120.6
C1—N1—C12120.7 (3)C10—C9—H9120.6
C1—N1—C13118.3 (3)N2—C10—C9121.4 (4)
C12—N1—C13119.9 (2)N2—C10—H10119.3
C10—N2—C11121.4 (3)C9—C10—H10119.3
C10—N2—C15118.7 (3)C7—C11—N2117.8 (3)
C11—N2—C15118.7 (3)C7—C11—C12119.2 (4)
C16—N3—Cu1175.2 (3)N2—C11—C12122.9 (4)
C17—N4—Cu1172.8 (2)N1—C12—C4119.0 (3)
C18—N5—Cu1176.2 (3)N1—C12—C11122.9 (3)
N1—C1—C2121.2 (3)C4—C12—C11118.0 (4)
N1—C1—H1119.4N1—C13—C14113.0 (2)
C2—C1—H1119.4N1—C13—H13A109.0
C3—C2—C1119.7 (3)C14—C13—H13A109.0
C3—C2—H2120.1N1—C13—H13B109.0
C1—C2—H2120.1C14—C13—H13B109.0
C2—C3—C4120.2 (3)H13A—C13—H13B107.8
C2—C3—H3119.9C13—C14—C15110.9 (2)
C4—C3—H3119.9C13—C14—H14A109.4
C3—C4—C12118.1 (3)C15—C14—H14A109.4
C3—C4—C5121.8 (3)C13—C14—H14B109.4
C12—C4—C5120.1 (3)C15—C14—H14B109.4
C6—C5—C4120.2 (5)H14A—C14—H14B108.0
C6—C5—H5119.9N2—C15—C14112.8 (2)
C4—C5—H5119.9N2—C15—H15A109.0
C5—C6—C7120.7 (5)C14—C15—H15A109.0
C5—C6—H6119.7N2—C15—H15B109.0
C7—C6—H6119.7C14—C15—H15B109.0
C11—C7—C6120.0 (3)H15A—C15—H15B107.8
C11—C7—C8118.4 (3)N3—C16—S1178.3 (3)
C6—C7—C8121.6 (3)N4—C17—S2179.0 (3)
C9—C8—C7120.8 (3)N5—C18—S3179.4 (3)
C9—C8—H8119.6
C12—N1—C1—C23.3 (5)C15—N2—C11—C7155.2 (3)
C13—N1—C1—C2−164.4 (3)C10—N2—C11—C12171.5 (3)
N1—C1—C2—C35.5 (5)C15—N2—C11—C12−21.0 (4)
C1—C2—C3—C4−5.8 (5)C1—N1—C12—C4−11.3 (4)
C2—C3—C4—C12−2.2 (4)C13—N1—C12—C4156.1 (3)
C2—C3—C4—C5175.7 (3)C1—N1—C12—C11171.5 (3)
C3—C4—C5—C6−176.6 (3)C13—N1—C12—C11−21.1 (4)
C12—C4—C5—C61.2 (4)C3—C4—C12—N110.7 (4)
C4—C5—C6—C7−7.5 (4)C5—C4—C12—N1−167.2 (3)
C5—C6—C7—C112.2 (4)C3—C4—C12—C11−172.0 (3)
C5—C6—C7—C8−176.2 (3)C5—C4—C12—C1110.1 (4)
C11—C7—C8—C9−2.4 (5)C7—C11—C12—N1162.0 (3)
C6—C7—C8—C9176.1 (3)N2—C11—C12—N1−21.8 (4)
C7—C8—C9—C10−6.4 (5)C7—C11—C12—C4−15.2 (4)
C11—N2—C10—C93.6 (4)N2—C11—C12—C4161.0 (3)
C15—N2—C10—C9−163.9 (3)C1—N1—C13—C14−111.1 (3)
C8—C9—C10—N25.9 (5)C12—N1—C13—C1481.2 (3)
C6—C7—C11—N2−167.1 (3)N1—C13—C14—C15−42.1 (4)
C8—C7—C11—N211.4 (4)C10—N2—C15—C14−110.8 (3)
C6—C7—C11—C129.3 (4)C11—N2—C15—C1481.4 (3)
C8—C7—C11—C12−172.2 (3)C13—C14—C15—N2−43.3 (4)
C10—N2—C11—C7−12.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2065).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Liu, Y., Li, Q., Guo, G.-S. & Chen, K. (2007). Cryst. Growth Des.7, 1672–1675.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, X.-M., Huang, X.-Q., Dou, J.-M. & Li, D.-C. (2008). Acta Cryst. E64, m489. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography