PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1184.
Published online 2010 September 4. doi:  10.1107/S1600536810034446
PMCID: PMC2983324

Acetato­(N-[(E)-1-(6-methyl-2-pyrid­yl)methyl­idene]-2-{2-[(E)-1-(6-methyl-2-pyrid­yl)methyl­idene­amino]­pheneth­yl}aniline)nickel(II) perchlorate

Abstract

In the title complex, [Ni(CH3COO)(C28H26N4)]ClO4, the NiII atom is coordinated by two imine N atoms and two pyridine N atoms of the N-[(E)-1-(6-methyl-2-pyrid­yl)methyl­idene]-2-(2-[(E)-1-(6-methyl-2-pyrid­yl)methyl­idene­amino]­pheneth­yl)aniline donor ligand and two O atoms of the acetate ion in a distorted octa­hedral coordination. The average Ni—N and Ni—O bond lengths are 2.131 (13) and 2.098 (11) Å, respectively. An intramolecular N—H(...)O inter­action occurs. Relatively weak inter­molecular C—H(...)O inter­actions between the ligands and the ClO4 ions result in a chain extending along the b axis.

Related literature

For structures of Ni complexes with ligands formed by the condensation of 2-pyridyl aldehydes and a variety of diamines, see: Banerjee et al. (2004 [triangle]). For comparison Ni—N bond distances, see: Martin et al. (1977 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1184-scheme1.jpg

Experimental

Crystal data

  • [Ni(C2H3O2)(C28H26N4)]ClO4
  • M r = 635.73
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1184-efi1.jpg
  • a = 8.5759 (8) Å
  • b = 11.4975 (10) Å
  • c = 14.8322 (13) Å
  • α = 79.392 (2)°
  • β = 78.102 (2)°
  • γ = 81.327 (2)°
  • V = 1396.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 200 K
  • 0.23 × 0.11 × 0.10 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • 10545 measured reflections
  • 6856 independent reflections
  • 3311 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.149
  • S = 1.05
  • 6856 reflections
  • 382 parameters
  • H-atom parameters constrained
  • Δρmax = 1.04 e Å−3
  • Δρmin = −1.84 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034446/pv2321sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034446/pv2321Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Korea Research Foundation Grant funded by the Korean Government (KRF-2008–313-C00433).

supplementary crystallographic information

Comment

The coordination chemistry of Schiff-base ligands formed by the condensation of 2-pyridyl aldehydes with a variety of diamines has been reported recently. These ligands bind tetradentately to metal ions to form a planar arrangement around the metals (Banerjee et al., 2004). We are quite interested in the synthesis of this type of Schiff-base tetraamine nickel(II) complexes and have obtained a novel nickel(II) compound with an acetate group. In this paper, we report the synthesis and crystal structure of the title complex.

The title complex consists of [Ni(mpma)(η2-CH3CO2)]+ (mpma = N1-[(E)-1-(6-methyl-2-pyridyl)-methylidene]-2-(2-[(E)-1-(6- methyl-2-pyridyl)methylidene]aminophene-thyl)aniline) cation and ClO-4 anion (Fig. 1) wherein the Nickel(II) ion is six-coordinated with four N atoms of mpma and two O atoms of the acetate group, giving a distorted octahedral geometry. The average Ni—N and Ni—O bond lengths are 2.131 (13) and 2.098 (11) Å, respectively. It is in good agreement with the general trend that the nickel(II)-nitrogen bonds are longer (or weaker) in the octahedral species than in square planar species (Ni—N = 1.88–1.91 Å) (Martin et al., 1977). The N1—Ni1—N2, N3—Ni1—N4, and O1—Ni1—O2 bond angles are 79.57 (16), 79.87 (18), and 63.16 (14)°, respectively. The deviation of these angles from the ideal octahedral geometry is due to the constraints of the five membered chelate rings (N1—Ni1—N2—C7—C6 and N3—Ni1—N4—N23—N22) and four membered chelate ring (O1—Ni1—O2—C29). The distortion is also reflected in the bond angles N2—Ni1—N4, O2—Ni1—N1, and O1—Ni1—N3, which are 171.81 (19), 164.65 (15), and 158.19 (15)°, respectively. Relatively weak, intermolecular, C—H···O distances are found between the ligand and ClO4- ion, forming an one-dimensional chain extended along the b-axis (Fig. 2 and Tab. 1).

Experimental

Nickel(II)acetate tetrahydrate (0.5 g, 2.0 mmol) dissolved in dry methanol (25 ml) was added dropwise to a methanol solution (10 ml) of mpma (0.84 g, 2.0 mmol) and stirred. A green color solution appeared. Then methanol solution (5 ml) of sodium perchlorate (0.25 g, 2.0 mmol) was added. After 1 h, a crystalline powder (1.15 g) was collected by filtration and dried in vacuum. The powder (ca. 0.7 g) was dissolved in dry methanol (5 ml) and then diethyl ether (5 ml) was added slowly into the methanol solution. Suitable crystals for X-ray analysis were obtained from the solution after one day.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with distances C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H-atoms and Uiso(H) = 1.5 (methyl) and 1.2 (the rest) × the Ueq of the parent C-atoms. A relatively large residual density on Ni ion is a ghost peak residing less than 1 Å from the ion. An absorption correction did not improve the refinement.

Figures

Fig. 1.
Structure of the title compound showing 33% probability displacement ellipsoids and the atom-numbering scheme; H atoms have been omitted for clarity.
Fig. 2.
One-dimensional chain of the title complex formed by intermolecular interactions (dotted lines); H atoms have been omitted except for those involved in the C—H···O interactions.

Crystal data

[Ni(C2H3O2)(C28H26N4)]ClO4Z = 2
Mr = 635.73F(000) = 660
Triclinic, P1Dx = 1.511 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5759 (8) ÅCell parameters from 2599 reflections
b = 11.4975 (10) Åθ = 2.4–26.0°
c = 14.8322 (13) ŵ = 0.84 mm1
α = 79.392 (2)°T = 200 K
β = 78.102 (2)°Block, yellow
γ = 81.327 (2)°0.23 × 0.11 × 0.10 mm
V = 1396.9 (2) Å3

Data collection

Bruker APEX CCD area-detector diffractometer3311 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
graphiteθmax = 28.3°, θmin = 1.4°
[var phi] & ω scansh = −9→11
10545 measured reflectionsk = −15→15
6856 independent reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + 2.2621P] where P = (Fo2 + 2Fc2)/3
6856 reflections(Δ/σ)max < 0.001
382 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = −1.84 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.81516 (9)0.76280 (6)0.72685 (5)0.02685 (19)
N11.0115 (5)0.8119 (4)0.6208 (3)0.0245 (10)
C11.1033 (7)0.7543 (5)0.5523 (4)0.0314 (14)
C21.0751 (7)0.6312 (5)0.5466 (4)0.0404 (16)
H2A1.07360.58150.60800.061*
H2B1.16140.59750.50100.061*
H2C0.97190.63380.52730.061*
C31.2207 (7)0.8104 (5)0.4861 (4)0.0382 (16)
H31.27970.76980.43720.046*
C41.2535 (7)0.9230 (5)0.4898 (4)0.0342 (15)
H41.33430.96020.44470.041*
C51.1637 (7)0.9801 (5)0.5622 (4)0.0351 (15)
H51.18241.05740.56810.042*
C61.0472 (7)0.9219 (5)0.6249 (4)0.0283 (13)
C70.9486 (7)0.9817 (5)0.7008 (4)0.0289 (13)
H70.95751.06270.70200.035*
N20.8519 (5)0.9256 (4)0.7645 (3)0.0264 (11)
C80.7531 (7)0.9948 (5)0.8311 (4)0.0294 (14)
C90.6261 (7)1.0765 (4)0.8044 (4)0.0329 (15)
H90.60291.08330.74360.039*
C100.5334 (7)1.1478 (5)0.8670 (4)0.0353 (15)
H100.44681.20290.84900.042*
C110.5679 (7)1.1381 (5)0.9551 (4)0.0373 (16)
H110.50571.18720.99760.045*
C120.6942 (7)1.0560 (5)0.9817 (4)0.0364 (15)
H120.71801.05021.04230.044*
C130.7850 (7)0.9829 (4)0.9209 (4)0.0275 (13)
C140.9193 (7)0.8913 (5)0.9504 (4)0.0347 (15)
H14A0.93910.90501.01090.042*
H14B1.01880.90240.90370.042*
C150.8821 (7)0.7607 (4)0.9605 (4)0.0290 (13)
H15A0.82970.73371.02540.035*
H15B0.80750.75670.91860.035*
C161.0336 (7)0.6814 (4)0.9361 (4)0.0252 (12)
C171.1568 (7)0.6698 (5)0.9882 (4)0.0308 (14)
H171.14020.71081.04010.037*
C181.2997 (7)0.6012 (5)0.9660 (4)0.0393 (15)
H181.38040.59541.00240.047*
C191.3277 (8)0.5402 (5)0.8913 (4)0.0418 (16)
H191.42740.49300.87590.050*
C201.2097 (7)0.5483 (5)0.8389 (4)0.0360 (15)
H201.22830.50620.78760.043*
C211.0633 (7)0.6177 (5)0.8609 (4)0.0272 (13)
N30.9426 (5)0.6226 (4)0.8063 (3)0.0253 (11)
C220.9007 (7)0.5194 (5)0.8015 (4)0.0308 (14)
H220.94670.44880.83540.037*
C230.7849 (7)0.5120 (4)0.7447 (4)0.0264 (13)
C240.7234 (7)0.4057 (5)0.7518 (4)0.0359 (15)
H240.75710.33670.79240.043*
C250.6106 (7)0.4033 (5)0.6974 (4)0.0387 (16)
H250.56070.33330.70320.046*
C260.5713 (7)0.5021 (5)0.6354 (4)0.0391 (16)
H260.49490.50080.59750.047*
C270.6460 (7)0.6062 (5)0.6284 (4)0.0296 (13)
C280.6155 (8)0.7094 (5)0.5526 (4)0.0491 (18)
H28A0.51500.75790.57380.074*
H28B0.60740.67900.49640.074*
H28C0.70430.75840.53840.074*
N40.7454 (5)0.6115 (4)0.6852 (3)0.0267 (11)
O10.6159 (5)0.8708 (3)0.6811 (3)0.0337 (10)
O20.5968 (4)0.7613 (3)0.8201 (2)0.0291 (9)
C290.5314 (7)0.8311 (5)0.7580 (4)0.0317 (14)
C300.3545 (7)0.8655 (5)0.7740 (4)0.0455 (17)
H30A0.33150.95220.77000.068*
H30B0.30630.82710.83610.068*
H30C0.30920.83970.72650.068*
Cl10.1830 (2)0.26066 (14)0.70157 (11)0.0417 (4)
O30.2297 (6)0.3780 (4)0.6741 (3)0.0703 (16)
O40.0681 (6)0.2487 (4)0.6474 (3)0.0619 (14)
O50.3214 (6)0.1768 (4)0.6830 (3)0.0754 (17)
O60.1128 (7)0.2433 (5)0.7980 (3)0.0837 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0292 (4)0.0244 (4)0.0265 (4)−0.0057 (3)−0.0023 (3)−0.0036 (3)
N10.030 (3)0.019 (2)0.024 (2)−0.006 (2)−0.003 (2)−0.0036 (19)
C10.044 (4)0.028 (3)0.020 (3)−0.005 (3)−0.001 (3)−0.004 (3)
C20.045 (4)0.041 (4)0.033 (4)−0.006 (3)0.005 (3)−0.011 (3)
C30.042 (4)0.043 (4)0.026 (3)−0.002 (3)0.000 (3)−0.003 (3)
C40.036 (4)0.029 (3)0.033 (3)−0.006 (3)0.002 (3)−0.002 (3)
C50.035 (4)0.035 (3)0.032 (3)−0.009 (3)−0.007 (3)0.006 (3)
C60.028 (3)0.032 (3)0.027 (3)−0.008 (3)−0.005 (3)−0.008 (3)
C70.031 (3)0.026 (3)0.032 (3)−0.008 (3)−0.004 (3)−0.009 (3)
N20.034 (3)0.026 (2)0.020 (2)−0.005 (2)0.000 (2)−0.010 (2)
C80.036 (4)0.020 (3)0.030 (3)−0.009 (3)0.000 (3)−0.001 (3)
C90.042 (4)0.019 (3)0.035 (3)−0.007 (3)0.001 (3)−0.001 (3)
C100.033 (4)0.024 (3)0.044 (4)−0.002 (3)0.000 (3)−0.003 (3)
C110.039 (4)0.031 (3)0.038 (4)−0.012 (3)0.011 (3)−0.009 (3)
C120.036 (4)0.035 (3)0.038 (4)−0.008 (3)−0.004 (3)−0.006 (3)
C130.025 (3)0.019 (3)0.036 (3)−0.001 (2)−0.001 (3)−0.006 (3)
C140.039 (4)0.034 (3)0.031 (3)−0.007 (3)−0.004 (3)−0.007 (3)
C150.034 (3)0.029 (3)0.025 (3)−0.009 (3)0.001 (3)−0.009 (3)
C160.029 (3)0.024 (3)0.023 (3)−0.008 (2)−0.004 (2)0.001 (2)
C170.029 (3)0.032 (3)0.032 (3)−0.004 (3)−0.010 (3)−0.005 (3)
C180.039 (4)0.040 (4)0.042 (4)0.000 (3)−0.019 (3)−0.005 (3)
C190.036 (4)0.045 (4)0.046 (4)0.007 (3)−0.014 (3)−0.013 (3)
C200.033 (4)0.039 (4)0.036 (4)−0.002 (3)−0.008 (3)−0.006 (3)
C210.024 (3)0.035 (3)0.023 (3)−0.004 (3)−0.009 (2)0.000 (3)
N30.024 (3)0.026 (2)0.019 (2)0.008 (2)−0.001 (2)0.002 (2)
C220.041 (4)0.018 (3)0.033 (3)−0.008 (3)−0.006 (3)−0.001 (2)
C230.029 (3)0.019 (3)0.029 (3)−0.007 (2)0.000 (3)−0.003 (2)
C240.033 (4)0.039 (4)0.035 (4)−0.007 (3)−0.001 (3)−0.007 (3)
C250.041 (4)0.031 (3)0.044 (4)−0.013 (3)0.004 (3)−0.013 (3)
C260.039 (4)0.041 (4)0.040 (4)−0.009 (3)−0.003 (3)−0.015 (3)
C270.026 (3)0.036 (3)0.026 (3)−0.003 (3)−0.003 (3)−0.008 (3)
C280.065 (5)0.049 (4)0.036 (4)−0.006 (4)−0.014 (3)−0.008 (3)
N40.033 (3)0.025 (2)0.025 (3)−0.006 (2)−0.005 (2)−0.009 (2)
O10.036 (3)0.034 (2)0.028 (2)−0.0085 (19)0.0022 (19)−0.0041 (19)
O20.034 (2)0.028 (2)0.024 (2)−0.0031 (18)−0.0057 (18)−0.0012 (17)
C290.037 (4)0.032 (3)0.028 (3)−0.006 (3)−0.005 (3)−0.009 (3)
C300.032 (4)0.053 (4)0.045 (4)0.003 (3)−0.002 (3)−0.002 (3)
Cl10.0513 (11)0.0365 (9)0.0393 (9)−0.0018 (8)−0.0136 (8)−0.0081 (7)
O30.092 (4)0.046 (3)0.081 (4)−0.033 (3)−0.013 (3)−0.015 (3)
O40.067 (4)0.065 (3)0.068 (3)−0.028 (3)−0.032 (3)−0.008 (3)
O50.083 (4)0.068 (3)0.065 (4)0.045 (3)−0.022 (3)−0.020 (3)
O60.105 (5)0.099 (4)0.032 (3)0.003 (4)0.001 (3)0.003 (3)

Geometric parameters (Å, °)

Ni1—O22.087 (4)C15—H15A0.9900
Ni1—O12.109 (4)C15—H15B0.9900
Ni1—N32.117 (4)C16—C211.405 (7)
Ni1—N12.121 (4)C16—C171.410 (7)
Ni1—N22.133 (4)C17—C181.368 (8)
Ni1—N42.151 (4)C17—H170.9500
Ni1—C292.417 (6)C18—C191.380 (8)
N1—C61.360 (6)C18—H180.9500
N1—C11.361 (6)C19—C201.380 (8)
C1—C31.396 (7)C19—H190.9500
C1—C21.491 (7)C20—C211.394 (7)
C2—H2A0.9800C20—H200.9500
C2—H2B0.9800C21—N31.428 (7)
C2—H2C0.9800N3—C221.309 (6)
C3—C41.378 (7)C22—C231.449 (8)
C3—H30.9500C22—H220.9500
C4—C51.394 (7)C23—N41.356 (6)
C4—H40.9500C23—C241.381 (7)
C5—C61.379 (7)C24—C251.386 (8)
C5—H50.9500C24—H240.9500
C6—C71.473 (7)C25—C261.370 (8)
C7—N21.269 (6)C25—H250.9500
C7—H70.9500C26—C271.419 (7)
N2—C81.437 (6)C26—H260.9500
C8—C131.393 (8)C27—N41.331 (7)
C8—C91.399 (8)C27—C281.509 (8)
C9—C101.394 (7)C28—H28A0.9800
C9—H90.9500C28—H28B0.9800
C10—C111.380 (8)C28—H28C0.9800
C10—H100.9500O1—C291.265 (6)
C11—C121.397 (8)O2—C291.270 (6)
C11—H110.9500C29—C301.490 (8)
C12—C131.385 (7)C30—H30A0.9800
C12—H120.9500C30—H30B0.9800
C13—C141.517 (7)C30—H30C0.9800
C14—C151.556 (7)Cl1—O61.422 (4)
C14—H14A0.9900Cl1—O51.426 (4)
C14—H14B0.9900Cl1—O31.428 (4)
C15—C161.490 (7)Cl1—O41.429 (5)
O2—Ni1—O163.17 (14)C16—C15—C14109.9 (5)
O2—Ni1—N396.41 (15)C16—C15—H15A109.7
O1—Ni1—N3158.19 (15)C14—C15—H15A109.7
O2—Ni1—N1164.65 (15)C16—C15—H15B109.7
O1—Ni1—N1103.58 (15)C14—C15—H15B109.7
N3—Ni1—N197.63 (17)H15A—C15—H15B108.2
O2—Ni1—N290.38 (15)C21—C16—C17116.9 (5)
O1—Ni1—N281.85 (16)C21—C16—C15123.1 (5)
N3—Ni1—N2107.24 (18)C17—C16—C15120.0 (5)
N1—Ni1—N279.57 (16)C18—C17—C16121.8 (6)
O2—Ni1—N484.69 (15)C18—C17—H17119.1
O1—Ni1—N490.08 (17)C16—C17—H17119.1
N3—Ni1—N479.87 (18)C17—C18—C19120.6 (6)
N1—Ni1—N4103.85 (16)C17—C18—H18119.7
N2—Ni1—N4171.81 (19)C19—C18—H18119.7
O2—Ni1—C2931.69 (15)C20—C19—C18119.5 (6)
O1—Ni1—C2931.52 (16)C20—C19—H19120.3
N3—Ni1—C29127.48 (18)C18—C19—H19120.3
N1—Ni1—C29134.88 (19)C19—C20—C21120.5 (6)
N2—Ni1—C2986.64 (18)C19—C20—H20119.7
N4—Ni1—C2985.73 (18)C21—C20—H20119.7
C6—N1—C1116.9 (4)C20—C21—C16120.7 (5)
C6—N1—Ni1111.2 (3)C20—C21—N3119.2 (5)
C1—N1—Ni1131.9 (4)C16—C21—N3120.1 (5)
N1—C1—C3120.6 (5)C22—N3—C21115.2 (5)
N1—C1—C2119.5 (5)C22—N3—Ni1110.9 (4)
C3—C1—C2119.8 (5)C21—N3—Ni1133.9 (4)
C1—C2—H2A109.5N3—C22—C23120.6 (5)
C1—C2—H2B109.5N3—C22—H22119.7
H2A—C2—H2B109.5C23—C22—H22119.7
C1—C2—H2C109.5N4—C23—C24123.5 (6)
H2A—C2—H2C109.5N4—C23—C22116.9 (5)
H2B—C2—H2C109.5C24—C23—C22119.6 (5)
C4—C3—C1121.9 (5)C23—C24—C25117.6 (6)
C4—C3—H3119.1C23—C24—H24121.2
C1—C3—H3119.1C25—C24—H24121.2
C3—C4—C5117.4 (5)C26—C25—C24120.0 (6)
C3—C4—H4121.3C26—C25—H25120.0
C5—C4—H4121.3C24—C25—H25120.0
C6—C5—C4118.6 (5)C25—C26—C27119.2 (6)
C6—C5—H5120.7C25—C26—H26120.4
C4—C5—H5120.7C27—C26—H26120.4
N1—C6—C5124.5 (5)N4—C27—C26120.9 (6)
N1—C6—C7116.0 (5)N4—C27—C28120.5 (5)
C5—C6—C7119.5 (5)C26—C27—C28118.6 (6)
N2—C7—C6120.5 (5)C27—C28—H28A109.5
N2—C7—H7119.8C27—C28—H28B109.5
C6—C7—H7119.8H28A—C28—H28B109.5
C7—N2—C8115.8 (4)C27—C28—H28C109.5
C7—N2—Ni1111.2 (3)H28A—C28—H28C109.5
C8—N2—Ni1129.7 (3)H28B—C28—H28C109.5
C13—C8—C9120.0 (5)C27—N4—C23118.6 (5)
C13—C8—N2120.6 (5)C27—N4—Ni1130.4 (4)
C9—C8—N2119.4 (5)C23—N4—Ni1109.1 (4)
C10—C9—C8120.1 (6)C29—O1—Ni187.8 (4)
C10—C9—H9119.9C29—O2—Ni188.7 (3)
C8—C9—H9119.9O1—C29—O2120.2 (6)
C11—C10—C9119.8 (6)O1—C29—C30119.3 (6)
C11—C10—H10120.1O2—C29—C30120.5 (5)
C9—C10—H10120.1O1—C29—Ni160.7 (3)
C10—C11—C12119.9 (6)O2—C29—Ni159.7 (3)
C10—C11—H11120.0C30—C29—Ni1175.6 (4)
C12—C11—H11120.0C29—C30—H30A109.5
C13—C12—C11120.8 (6)C29—C30—H30B109.5
C13—C12—H12119.6H30A—C30—H30B109.5
C11—C12—H12119.6C29—C30—H30C109.5
C12—C13—C8119.3 (5)H30A—C30—H30C109.5
C12—C13—C14121.0 (5)H30B—C30—H30C109.5
C8—C13—C14119.7 (5)O6—Cl1—O5110.9 (3)
C13—C14—C15113.1 (5)O6—Cl1—O3109.8 (3)
C13—C14—H14A109.0O5—Cl1—O3108.6 (3)
C15—C14—H14A109.0O6—Cl1—O4109.7 (3)
C13—C14—H14B109.0O5—Cl1—O4109.7 (3)
C15—C14—H14B109.0O3—Cl1—O4108.1 (3)
H14A—C14—H14B107.8
O2—Ni1—N1—C643.6 (9)C15—C16—C21—N3−3.0 (8)
O1—Ni1—N1—C672.7 (4)C20—C21—N3—C2256.1 (7)
N3—Ni1—N1—C6−112.4 (4)C16—C21—N3—C22−123.4 (5)
N2—Ni1—N1—C6−6.2 (4)C20—C21—N3—Ni1−122.4 (5)
N4—Ni1—N1—C6166.2 (4)C16—C21—N3—Ni158.1 (7)
C29—Ni1—N1—C668.3 (5)O2—Ni1—N3—C2274.9 (4)
O2—Ni1—N1—C1−136.2 (6)O1—Ni1—N3—C2255.2 (6)
O1—Ni1—N1—C1−107.1 (5)N1—Ni1—N3—C22−111.3 (4)
N3—Ni1—N1—C167.8 (5)N2—Ni1—N3—C22167.3 (3)
N2—Ni1—N1—C1174.0 (5)N4—Ni1—N3—C22−8.5 (4)
N4—Ni1—N1—C1−13.6 (5)C29—Ni1—N3—C2268.1 (4)
C29—Ni1—N1—C1−111.5 (5)O2—Ni1—N3—C21−106.6 (5)
C6—N1—C1—C3−4.2 (8)O1—Ni1—N3—C21−126.3 (5)
Ni1—N1—C1—C3175.6 (4)N1—Ni1—N3—C2167.2 (5)
C6—N1—C1—C2177.3 (5)N2—Ni1—N3—C21−14.2 (5)
Ni1—N1—C1—C2−2.9 (9)N4—Ni1—N3—C21170.0 (5)
N1—C1—C3—C43.0 (10)C29—Ni1—N3—C21−113.4 (5)
C2—C1—C3—C4−178.4 (6)C21—N3—C22—C23−177.1 (5)
C1—C3—C4—C5−0.5 (10)Ni1—N3—C22—C231.7 (6)
C3—C4—C5—C6−0.6 (9)N3—C22—C23—N411.5 (8)
C1—N1—C6—C53.2 (9)N3—C22—C23—C24−169.8 (5)
Ni1—N1—C6—C5−176.6 (5)N4—C23—C24—C25−2.6 (8)
C1—N1—C6—C7−178.8 (5)C22—C23—C24—C25178.8 (5)
Ni1—N1—C6—C71.4 (6)C23—C24—C25—C263.9 (8)
C4—C5—C6—N1−0.8 (9)C24—C25—C26—C27−0.6 (8)
C4—C5—C6—C7−178.7 (5)C25—C26—C27—N4−4.4 (8)
N1—C6—C7—N28.9 (8)C25—C26—C27—C28173.3 (5)
C5—C6—C7—N2−173.0 (6)C26—C27—N4—C235.7 (8)
C6—C7—N2—C8−175.5 (5)C28—C27—N4—C23−172.0 (5)
C6—C7—N2—Ni1−13.9 (7)C26—C27—N4—Ni1−156.9 (4)
O2—Ni1—N2—C7−157.5 (4)C28—C27—N4—Ni125.5 (8)
O1—Ni1—N2—C7−94.7 (4)C24—C23—N4—C27−2.2 (8)
N3—Ni1—N2—C7105.6 (4)C22—C23—N4—C27176.4 (5)
N1—Ni1—N2—C710.8 (4)C24—C23—N4—Ni1163.8 (4)
C29—Ni1—N2—C7−126.0 (4)C22—C23—N4—Ni1−17.6 (6)
O2—Ni1—N2—C80.8 (5)O2—Ni1—N4—C2780.4 (5)
O1—Ni1—N2—C863.7 (5)O1—Ni1—N4—C2717.3 (5)
N3—Ni1—N2—C8−96.0 (5)N3—Ni1—N4—C27177.9 (5)
N1—Ni1—N2—C8169.2 (5)N1—Ni1—N4—C27−86.7 (5)
C29—Ni1—N2—C832.3 (5)C29—Ni1—N4—C2748.6 (5)
C7—N2—C8—C13−105.4 (6)O2—Ni1—N4—C23−83.4 (3)
Ni1—N2—C8—C1397.1 (6)O1—Ni1—N4—C23−146.5 (3)
C7—N2—C8—C973.2 (7)N3—Ni1—N4—C2314.1 (3)
Ni1—N2—C8—C9−84.3 (6)N1—Ni1—N4—C23109.5 (3)
C13—C8—C9—C101.3 (8)C29—Ni1—N4—C23−115.2 (4)
N2—C8—C9—C10−177.3 (5)O2—Ni1—O1—C29−2.3 (3)
C8—C9—C10—C110.4 (8)N3—Ni1—O1—C2919.7 (6)
C9—C10—C11—C12−0.7 (9)N1—Ni1—O1—C29−174.0 (3)
C10—C11—C12—C13−0.6 (9)N2—Ni1—O1—C29−96.9 (3)
C11—C12—C13—C82.3 (8)N4—Ni1—O1—C2981.7 (3)
C11—C12—C13—C14−178.3 (5)O1—Ni1—O2—C292.3 (3)
C9—C8—C13—C12−2.6 (8)N3—Ni1—O2—C29−169.6 (3)
N2—C8—C13—C12176.0 (5)N1—Ni1—O2—C2934.2 (8)
C9—C8—C13—C14177.9 (5)N2—Ni1—O2—C2983.0 (3)
N2—C8—C13—C14−3.5 (8)N4—Ni1—O2—C29−90.5 (3)
C12—C13—C14—C15111.2 (6)Ni1—O1—C29—O23.9 (5)
C8—C13—C14—C15−69.3 (7)Ni1—O1—C29—C30−175.0 (5)
C13—C14—C15—C16148.2 (5)Ni1—O2—C29—O1−4.0 (5)
C14—C15—C16—C21−117.4 (6)Ni1—O2—C29—C30174.9 (5)
C14—C15—C16—C1761.1 (6)O2—Ni1—C29—O1176.1 (5)
C21—C16—C17—C180.9 (8)N3—Ni1—C29—O1−170.9 (3)
C15—C16—C17—C18−177.7 (5)N1—Ni1—C29—O18.2 (4)
C16—C17—C18—C19−0.2 (9)N2—Ni1—C29—O179.9 (3)
C17—C18—C19—C20−0.4 (9)N4—Ni1—C29—O1−97.1 (3)
C18—C19—C20—C210.2 (9)O1—Ni1—C29—O2−176.1 (5)
C19—C20—C21—C160.5 (9)N3—Ni1—C29—O213.0 (4)
C19—C20—C21—N3−179.0 (5)N1—Ni1—C29—O2−167.9 (3)
C17—C16—C21—C20−1.0 (8)N2—Ni1—C29—O2−96.2 (3)
C15—C16—C21—C20177.5 (5)N4—Ni1—C29—O286.8 (3)
C17—C16—C21—N3178.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.453.274 (6)144
C7—H7···O4ii0.952.413.290 (7)155
C20—H20···O3iii0.952.433.366 (8)168
C15—H15B···O20.992.543.523 (7)174
C15—H15B···N30.992.472.935 (7)108

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2321).

References

  • Banerjee, S., Gangopadhyay, J., Lu, C.-Z., Chen, J.-T. & Ghosh, A. (2004). Eur. J. Inorg. Chem. pp. 2533–2541.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Martin, L. Y., Sperati, C. R. & Busch, D. H. (1977). J. Am. Chem. Soc.99, 2968–2981.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography