PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2567.
Published online 2010 September 15. doi:  10.1107/S1600536810036305
PMCID: PMC2983323

2-(3-Oxo-3,4-dihydro-2H-1,4-benzothia­zin-4-yl)acetamide

Abstract

In the title compound, C10H10N2O2S, the thia­zine ring approximates to an envelope form with the S atom in the flap position. The amide group attached to the acetate group is almost perpendicular to the mean plane of the thia­zine ring [dihedral angle = 88.83 (8)°]. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur. Further N—H(...)O and C—H(...)O hydrogen bonds link the dimers into a three-dimensional network.

Related literature

For a related structure and background references, see: Saeed et al. (2010 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o2567-scheme1.jpg

Experimental

Crystal data

  • C10H10N2O2S
  • M r = 222.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2567-efi1.jpg
  • a = 8.0652 (6) Å
  • b = 4.8415 (3) Å
  • c = 26.1517 (19) Å
  • β = 94.798 (4)°
  • V = 1017.58 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 K
  • 0.28 × 0.09 × 0.06 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.921, T max = 0.982
  • 11611 measured reflections
  • 2544 independent reflections
  • 1693 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.107
  • S = 1.02
  • 2544 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036305/hb5628sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036305/hb5628Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Higher Education Commission of Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN Code: 042-120614-PS2-128).

supplementary crystallographic information

Comment

As part of our ongoing studies of 1,4-thiazine compounds (Saeed et al., 2010) we have synthesized 2-(3-oxo-2,3-dihydro benzo[b][1,4]thiazin-4-yl)acetamide for derivaziation and we report here the structure of the title compound.

The bond lengths and bond angles of the structure of the title compound is in comparison with our previously published structure of 2-(3-Oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetohydrazide (II) (Saeed et al., 2010). These molecules only differ in amide (I) and hydrazide (II) groups attached to carbonyl carbon of acetate. The dihedral angle between the two rings C1–C6 and C1/C6/N1/C7/C8/S1 are almost same in these molecules i.e. 17.47 (0.09)° and 16.77 (0.10)° respectively. The amide group C9/C10/O2/N2 attached to the thiazine ring is oriented at dihedral angle of 72.05 (0.08)° and 88.83 (0.08)° with respect to the aromatic and thiazine ring. The amido hydrogens atoms are involved N–H···O type interactions with the oxygens of two different molecules. The N–H···O and weak C–H···O form dimers which results in 16 members ring motif R22(16) (Bernstein et al., 1995) along the b axes.

Refinement

The C-H H-atoms were positioned gemetrically with C—H = 0.93 Å for aromatic and C—H = 0.97 Å for the methylene carbon atoms and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). The N-H H atoms were located in difference map with N—H= 0.84 (4)–0.87 (3) Å, Uiso(H) = 1.2 for N atoms.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I) with intermolecular hydrogen bonds shown by dashed lines. The hydrogen atom not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C10H10N2O2SF(000) = 464
Mr = 222.26Dx = 1.451 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2429 reflections
a = 8.0652 (6) Åθ = 2.5–24.3°
b = 4.8415 (3) ŵ = 0.30 mm1
c = 26.1517 (19) ÅT = 296 K
β = 94.798 (4)°Needle, colorless
V = 1017.58 (12) Å30.28 × 0.09 × 0.06 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2544 independent reflections
Radiation source: fine-focus sealed tube1693 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −10→10
Tmin = 0.921, Tmax = 0.982k = −6→6
11611 measured reflectionsl = −34→34

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2819P] where P = (Fo2 + 2Fc2)/3
2544 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Experimental. To a solution of (1.56 g)ethyl 2-(3-oxo-2,3-dihydrobenzo[b][1,4]thiazin-4-yl)- acetate in 10.0 ml ethanol, 5.0 ml of 33% ammonia was added and the mixture was left for a week at room temperature. The crystals of 2-(3-oxo-2,3-dihydrobenzo[1,4]thiazin-4-yl)acetamide appeared were filtered, washed with water and dried.(M.p 475k)
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3288 (2)0.0539 (4)0.31875 (7)0.0388 (4)
C20.4502 (3)−0.1224 (4)0.30259 (9)0.0529 (5)
H20.4358−0.20230.27020.063*
C30.5914 (3)−0.1799 (5)0.33408 (10)0.0584 (6)
H30.6726−0.29620.32280.070*
C40.6121 (3)−0.0650 (5)0.38215 (9)0.0530 (6)
H40.7083−0.10110.40320.064*
C50.4909 (2)0.1035 (4)0.39939 (8)0.0437 (5)
H50.50470.17590.43240.052*
C60.3480 (2)0.1667 (3)0.36793 (7)0.0338 (4)
C70.0611 (2)0.3388 (4)0.36763 (7)0.0378 (4)
C80.0096 (2)0.1364 (4)0.32606 (7)0.0416 (4)
H8A−0.10050.18380.31080.050*
H8B0.0043−0.04720.34070.050*
C90.2668 (3)0.5317 (4)0.42842 (7)0.0419 (5)
H9A0.20760.70470.42250.050*
H9B0.38510.57130.43060.050*
C100.2227 (2)0.4090 (3)0.47892 (7)0.0364 (4)
N10.22507 (19)0.3468 (3)0.38519 (6)0.0361 (4)
N20.2048 (2)0.5907 (4)0.51556 (7)0.0455 (4)
O1−0.04093 (19)0.4905 (3)0.38558 (6)0.0541 (4)
O20.2099 (2)0.1598 (3)0.48455 (6)0.0621 (5)
S10.15349 (7)0.13660 (13)0.277323 (19)0.05234 (19)
H1N0.170 (3)0.539 (5)0.5448 (10)0.063*
H2N0.200 (3)0.758 (5)0.5079 (9)0.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0372 (11)0.0433 (10)0.0364 (10)−0.0020 (8)0.0064 (8)0.0017 (8)
C20.0504 (14)0.0582 (13)0.0518 (13)0.0043 (11)0.0148 (11)−0.0085 (10)
C30.0427 (13)0.0595 (13)0.0757 (17)0.0117 (11)0.0204 (12)0.0056 (12)
C40.0333 (12)0.0619 (13)0.0638 (14)0.0005 (10)0.0038 (10)0.0158 (11)
C50.0363 (11)0.0515 (11)0.0430 (11)−0.0067 (9)0.0009 (9)0.0047 (9)
C60.0341 (10)0.0320 (8)0.0360 (9)−0.0051 (7)0.0064 (8)0.0037 (7)
C70.0421 (11)0.0369 (9)0.0354 (9)0.0030 (8)0.0097 (8)0.0096 (8)
C80.0337 (10)0.0518 (11)0.0389 (10)0.0008 (9)0.0000 (8)0.0045 (9)
C90.0567 (13)0.0299 (9)0.0395 (10)−0.0068 (9)0.0072 (9)−0.0014 (8)
C100.0422 (11)0.0288 (9)0.0378 (10)0.0007 (8)0.0015 (8)0.0012 (7)
N10.0407 (9)0.0342 (8)0.0339 (8)−0.0020 (7)0.0052 (7)−0.0014 (6)
N20.0665 (13)0.0331 (8)0.0372 (9)−0.0014 (8)0.0064 (9)0.0003 (7)
O10.0539 (10)0.0549 (8)0.0553 (9)0.0169 (7)0.0163 (8)0.0037 (7)
O20.1082 (14)0.0280 (7)0.0531 (9)−0.0020 (7)0.0254 (9)0.0033 (6)
S10.0471 (3)0.0784 (4)0.0311 (3)0.0047 (3)0.0010 (2)−0.0017 (2)

Geometric parameters (Å, °)

C1—C21.391 (3)C7—N11.364 (2)
C1—C61.394 (3)C7—C81.496 (3)
C1—S11.754 (2)C8—S11.794 (2)
C2—C31.377 (3)C8—H8A0.9700
C2—H20.9300C8—H8B0.9700
C3—C41.372 (3)C9—N11.459 (2)
C3—H30.9300C9—C101.517 (3)
C4—C51.377 (3)C9—H9A0.9700
C4—H40.9300C9—H9B0.9700
C5—C61.393 (3)C10—O21.221 (2)
C5—H50.9300C10—N21.318 (2)
C6—N11.422 (2)N2—H1N0.87 (3)
C7—O11.225 (2)N2—H2N0.84 (3)
C2—C1—C6119.62 (19)C7—C8—H8A109.4
C2—C1—S1120.25 (16)S1—C8—H8A109.4
C6—C1—S1120.14 (15)C7—C8—H8B109.4
C3—C2—C1120.7 (2)S1—C8—H8B109.4
C3—C2—H2119.7H8A—C8—H8B108.0
C1—C2—H2119.7N1—C9—C10112.25 (14)
C4—C3—C2119.8 (2)N1—C9—H9A109.2
C4—C3—H3120.1C10—C9—H9A109.2
C2—C3—H3120.1N1—C9—H9B109.2
C3—C4—C5120.3 (2)C10—C9—H9B109.2
C3—C4—H4119.8H9A—C9—H9B107.9
C5—C4—H4119.8O2—C10—N2123.82 (18)
C4—C5—C6120.8 (2)O2—C10—C9121.34 (17)
C4—C5—H5119.6N2—C10—C9114.82 (15)
C6—C5—H5119.6C7—N1—C6123.91 (15)
C5—C6—C1118.77 (17)C7—N1—C9115.64 (16)
C5—C6—N1120.77 (17)C6—N1—C9120.03 (16)
C1—C6—N1120.44 (17)C10—N2—H1N120.5 (16)
O1—C7—N1121.15 (18)C10—N2—H2N118.6 (16)
O1—C7—C8121.10 (19)H1N—N2—H2N119 (2)
N1—C7—C8117.75 (16)C1—S1—C895.57 (9)
C7—C8—S1111.06 (13)
C6—C1—C2—C3−2.0 (3)N1—C9—C10—N2−158.55 (18)
S1—C1—C2—C3177.41 (17)O1—C7—N1—C6176.58 (16)
C1—C2—C3—C40.8 (3)C8—C7—N1—C6−2.8 (2)
C2—C3—C4—C51.2 (3)O1—C7—N1—C94.0 (2)
C3—C4—C5—C6−1.9 (3)C8—C7—N1—C9−175.37 (15)
C4—C5—C6—C10.6 (3)C5—C6—N1—C7−153.56 (17)
C4—C5—C6—N1−178.24 (17)C1—C6—N1—C727.6 (2)
C2—C1—C6—C51.3 (3)C5—C6—N1—C918.7 (2)
S1—C1—C6—C5−178.14 (14)C1—C6—N1—C9−160.18 (16)
C2—C1—C6—N1−179.83 (17)C10—C9—N1—C778.0 (2)
S1—C1—C6—N10.7 (2)C10—C9—N1—C6−94.8 (2)
O1—C7—C8—S1136.66 (16)C2—C1—S1—C8142.29 (17)
N1—C7—C8—S1−43.93 (19)C6—C1—S1—C8−38.29 (16)
N1—C9—C10—O223.3 (3)C7—C8—S1—C157.82 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N···O1i0.87 (3)2.18 (3)3.026 (2)164 (2)
N2—H2N···O2ii0.84 (3)2.04 (3)2.873 (2)174 (2)
C8—H8B···O1iii0.972.573.532 (2)173

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, y+1, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5628).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Saeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289–o2290. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography