PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1279.
Published online 2010 September 18. doi:  10.1107/S1600536810036731
PMCID: PMC2983322

Bis(2-amino­pyrimidine-κN 1)aqua­(nitrato-κO)(nitrato-κ2 O,O′)zinc(II)

Abstract

The water-coordinated Zn atom in the title monoaqua zinc nitrate adduct of 2-amino­pyrimidine, [Zn(NO3)2(C4H5N3)2(H2O)], is bonded to a monodentate nitrate ion and is chelated by the other nitrate ion. The heterocyclic ligands coordinate through ring N-donor sites. The coordination geometry about the Zn(II) atom is a distorted octa­hedron. Intra­molecular N—H(...)O hydrogen bonds occur. In the crystal, adjacent adduct mol­ecules are linked by O—H(...)O, O—H(...)N and N—H(...)O hydrogen bonds into a layer motif parallel to (001).

Related literature

The aqua­zinc nitrate adduct is isotypic with its Co and Ni analogs, see: Pike et al. (2006 [triangle]). The copper nitrate adduct is anhydrous, see: Albada et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1279-scheme1.jpg

Experimental

Crystal data

  • [Zn(NO3)2(C4H5N3)2(H2O)]
  • M r = 397.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1279-efi1.jpg
  • a = 13.2742 (4) Å
  • b = 8.0142 (2) Å
  • c = 28.6204 (7) Å
  • β = 101.335 (1)°
  • V = 2985.31 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.70 mm−1
  • T = 293 K
  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.706, T max = 0.822
  • 14113 measured reflections
  • 3401 independent reflections
  • 3006 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.081
  • S = 1.04
  • 3401 reflections
  • 241 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036731/jh2204sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036731/jh2204Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The cobalt, nickel and copper adducts of 2-aminopyrimidine have been reported; the first two are monoaqua complexes (Pike et al., 2006) whereas the copper complex is anhydrous (Albada et al., 2002). In the aqua complexes, one nitrate is monodentate and the other is chelating; the heterocyclic ligand coordinates through a ring donor site. The present zinc analog (Scheme I, Fig. 1) is isostructural to the cobalt and nickel adducts, whose structures have been described in detail. Adjacent molecules are linked by O–H···O and N–H···O hydrogen bonds into a layer motif (Fig. 2).

Experimental

Zinc nitrate (1 mmol) and 2-aminopyrimidine (1 mmol) were dissolved in a small volume of water to give a colorless solution. Colorless prismatic crystals separated from the solution after a few days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of Zn(H2O)(NO3)2(C4H5N3)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Hydrogen-bonded layer structure.

Crystal data

[Zn(NO3)2(C4H5N3)2(H2O)]F(000) = 1616
Mr = 397.63Dx = 1.769 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11713 reflections
a = 13.2742 (4) Åθ = 3.0–27.4°
b = 8.0142 (2) ŵ = 1.70 mm1
c = 28.6204 (7) ÅT = 293 K
β = 101.335 (1)°Prism, colorless
V = 2985.31 (14) Å30.22 × 0.18 × 0.12 mm
Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer3401 independent reflections
Radiation source: fine-focus sealed tube3006 reflections with I > 2σ(I)
graphiteRint = 0.039
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = −17→17
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −10→10
Tmin = 0.706, Tmax = 0.822l = −34→37
14113 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0479P)2 + 2.0445P] where P = (Fo2 + 2Fc2)/3
3401 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.40 e Å3
6 restraintsΔρmin = −0.42 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.498530 (14)0.66515 (3)0.616791 (7)0.02883 (9)
O10.39847 (10)0.55960 (19)0.66269 (5)0.0379 (3)
O20.28031 (17)0.4531 (3)0.60891 (6)0.0822 (7)
O30.30770 (17)0.3540 (3)0.67905 (8)0.0742 (6)
O40.46872 (15)0.4598 (2)0.55893 (9)0.0764 (7)
O50.56026 (15)0.4082 (3)0.62668 (7)0.0614 (5)
O60.5176 (2)0.2078 (2)0.57552 (7)0.0745 (6)
O1W0.62147 (10)0.7246 (2)0.58475 (5)0.0377 (3)
N10.39392 (11)0.8157 (2)0.57361 (5)0.0301 (3)
N20.24514 (12)0.9882 (2)0.55462 (6)0.0398 (4)
N30.29718 (15)0.8839 (3)0.63018 (7)0.0492 (5)
N40.55915 (12)0.8053 (2)0.67664 (5)0.0306 (3)
N50.64072 (15)0.8410 (2)0.75816 (6)0.0437 (4)
N60.60734 (16)0.5800 (2)0.72650 (7)0.0460 (4)
N70.32868 (12)0.4509 (2)0.64962 (6)0.0371 (4)
N80.51533 (15)0.3535 (2)0.58614 (8)0.0466 (4)
C10.40689 (15)0.8333 (3)0.52831 (7)0.0351 (4)
H10.46240.78050.51920.042*
C20.34156 (16)0.9258 (3)0.49524 (7)0.0415 (5)
H20.35120.93660.46410.050*
C30.26084 (16)1.0021 (3)0.51044 (7)0.0418 (5)
H30.21541.06620.48880.050*
C40.31217 (13)0.8944 (3)0.58546 (7)0.0329 (4)
C50.56075 (18)0.9717 (3)0.67104 (8)0.0447 (5)
H50.53351.01690.64130.054*
C60.6010 (2)1.0766 (3)0.70754 (10)0.0586 (6)
H60.60241.19160.70330.070*
C70.63959 (19)1.0039 (3)0.75104 (8)0.0534 (6)
H70.66611.07290.77660.064*
C80.60164 (13)0.7461 (3)0.72035 (6)0.0317 (4)
H110.6657 (17)0.789 (3)0.5994 (9)0.061 (8)*
H120.653 (2)0.640 (2)0.5780 (11)0.067 (9)*
H310.3355 (18)0.817 (3)0.6501 (8)0.053 (8)*
H320.2393 (12)0.920 (3)0.6356 (10)0.057 (8)*
H610.567 (2)0.515 (3)0.7066 (9)0.074 (9)*
H620.624 (2)0.548 (4)0.7560 (5)0.071 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.02802 (13)0.03286 (14)0.02437 (13)0.00355 (8)0.00208 (8)−0.00019 (8)
O10.0338 (7)0.0452 (8)0.0339 (7)−0.0098 (6)0.0044 (5)−0.0037 (6)
O20.0895 (14)0.1073 (18)0.0386 (9)−0.0538 (13)−0.0145 (9)0.0059 (10)
O30.0787 (14)0.0756 (14)0.0671 (13)−0.0275 (10)0.0110 (11)0.0237 (10)
O40.0554 (10)0.0468 (10)0.1130 (18)0.0005 (8)−0.0180 (11)0.0186 (11)
O50.0691 (11)0.0716 (12)0.0484 (10)−0.0027 (9)0.0233 (8)−0.0121 (9)
O60.1327 (19)0.0331 (9)0.0651 (12)0.0095 (10)0.0380 (12)−0.0043 (9)
O1W0.0294 (7)0.0403 (8)0.0446 (8)−0.0014 (6)0.0102 (6)−0.0080 (7)
N10.0258 (7)0.0392 (9)0.0245 (7)0.0043 (6)0.0032 (6)0.0006 (6)
N20.0365 (8)0.0476 (10)0.0336 (8)0.0150 (7)0.0028 (7)0.0005 (7)
N30.0460 (10)0.0729 (13)0.0310 (9)0.0265 (10)0.0133 (8)0.0088 (9)
N40.0319 (7)0.0340 (8)0.0257 (7)−0.0031 (6)0.0051 (6)0.0003 (6)
N50.0488 (10)0.0522 (11)0.0279 (8)−0.0134 (8)0.0022 (7)−0.0063 (7)
N60.0556 (11)0.0426 (10)0.0327 (9)−0.0036 (8)−0.0089 (8)0.0065 (8)
N70.0328 (8)0.0439 (9)0.0345 (8)−0.0068 (7)0.0066 (6)0.0001 (7)
N80.0512 (11)0.0366 (10)0.0561 (12)0.0037 (8)0.0210 (9)−0.0023 (8)
C10.0344 (9)0.0444 (11)0.0272 (9)0.0067 (8)0.0075 (7)0.0022 (7)
C20.0451 (11)0.0533 (13)0.0256 (9)0.0084 (9)0.0056 (8)0.0066 (9)
C30.0412 (10)0.0475 (12)0.0330 (10)0.0103 (9)−0.0018 (8)0.0042 (9)
C40.0296 (9)0.0401 (10)0.0281 (9)0.0053 (7)0.0030 (7)−0.0011 (7)
C50.0589 (13)0.0350 (11)0.0386 (11)−0.0020 (9)0.0055 (9)0.0039 (9)
C60.0835 (18)0.0343 (12)0.0553 (14)−0.0100 (11)0.0072 (13)−0.0061 (10)
C70.0634 (14)0.0536 (14)0.0417 (12)−0.0178 (12)0.0068 (10)−0.0162 (11)
C80.0287 (8)0.0404 (11)0.0252 (8)−0.0058 (7)0.0035 (7)−0.0001 (7)

Geometric parameters (Å, °)

Zn1—N12.0583 (15)N3—H310.869 (10)
Zn1—N42.0740 (16)N3—H320.864 (10)
Zn1—O1W2.0782 (14)N4—C51.343 (3)
Zn1—O52.214 (2)N4—C81.353 (2)
Zn1—O12.2117 (14)N5—C71.320 (3)
Zn1—O42.313 (2)N5—C81.341 (2)
O1—N71.273 (2)N6—C81.342 (3)
O2—N71.215 (2)N6—H610.871 (10)
O3—N71.218 (3)N6—H620.869 (10)
O4—N81.235 (3)C1—C21.369 (3)
O5—N81.274 (3)C1—H10.9300
O6—N81.209 (2)C2—C31.376 (3)
O1W—H110.831 (10)C2—H20.9300
O1W—H120.840 (10)C3—H30.9300
N1—C11.348 (2)C5—C61.366 (3)
N1—C41.355 (2)C5—H50.9300
N2—C31.326 (3)C6—C71.379 (4)
N2—C41.351 (2)C6—H60.9300
N3—C41.336 (3)C7—H70.9300
N1—Zn1—N4106.55 (6)C8—N6—H62115 (2)
N1—Zn1—O1W95.52 (6)H61—N6—H62118 (3)
N4—Zn1—O1W91.68 (6)O3—N7—O2121.54 (19)
N1—Zn1—O5144.20 (7)O3—N7—O1119.02 (18)
N4—Zn1—O5108.93 (7)O2—N7—O1119.28 (18)
O1W—Zn1—O588.09 (6)O6—N8—O4122.8 (2)
N1—Zn1—O199.66 (6)O6—N8—O5122.1 (2)
N4—Zn1—O184.11 (6)O4—N8—O5115.1 (2)
O1W—Zn1—O1164.82 (6)N1—C1—C2122.55 (18)
O5—Zn1—O179.56 (6)N1—C1—H1118.7
N1—Zn1—O489.25 (6)C2—C1—H1118.7
N4—Zn1—O4163.88 (6)C1—C2—C3116.67 (19)
O1W—Zn1—O483.45 (7)C1—C2—H2121.7
O5—Zn1—O455.71 (7)C3—C2—H2121.7
O1—Zn1—O496.60 (7)N2—C3—C2122.81 (18)
N7—O1—Zn1125.05 (12)N2—C3—H3118.6
N8—O4—Zn192.60 (16)C2—C3—H3118.6
N8—O5—Zn196.21 (14)N3—C4—N2117.25 (17)
Zn1—O1W—H11117 (2)N3—C4—N1119.20 (17)
Zn1—O1W—H12113 (2)N2—C4—N1123.53 (17)
H11—O1W—H12106 (3)N4—C5—C6122.2 (2)
C1—N1—C4116.87 (16)N4—C5—H5118.9
C1—N1—Zn1116.11 (12)C6—C5—H5118.9
C4—N1—Zn1126.99 (13)C5—C6—C7116.8 (2)
C3—N2—C4117.57 (17)C5—C6—H6121.6
C4—N3—H31119.3 (18)C7—C6—H6121.6
C4—N3—H32117.1 (19)N5—C7—C6123.2 (2)
H31—N3—H32121 (3)N5—C7—H7118.4
C5—N4—C8116.43 (17)C6—C7—H7118.4
C5—N4—Zn1116.84 (13)N6—C8—N5117.00 (17)
C8—N4—Zn1126.66 (13)N6—C8—N4118.12 (17)
C7—N5—C8116.47 (19)N5—C8—N4124.86 (19)
C8—N6—H61120 (2)
N1—Zn1—O1—N772.86 (16)O5—Zn1—N4—C8−19.60 (17)
N4—Zn1—O1—N7178.70 (16)O1—Zn1—N4—C857.21 (15)
O1W—Zn1—O1—N7−106.8 (2)O4—Zn1—N4—C8−36.2 (3)
O5—Zn1—O1—N7−70.77 (15)Zn1—O1—N7—O3150.33 (18)
O4—Zn1—O1—N7−17.50 (16)Zn1—O1—N7—O2−34.3 (3)
N1—Zn1—O4—N8−168.46 (15)Zn1—O4—N8—O6173.3 (2)
N4—Zn1—O4—N822.8 (4)Zn1—O4—N8—O5−5.9 (2)
O1W—Zn1—O4—N895.89 (15)Zn1—O5—N8—O6−173.0 (2)
O5—Zn1—O4—N83.73 (13)Zn1—O5—N8—O46.2 (2)
O1—Zn1—O4—N8−68.82 (15)C4—N1—C1—C20.0 (3)
N1—Zn1—O5—N89.79 (19)Zn1—N1—C1—C2178.16 (17)
N4—Zn1—O5—N8−178.14 (12)N1—C1—C2—C30.3 (3)
O1W—Zn1—O5—N8−87.01 (13)C4—N2—C3—C20.0 (3)
O1—Zn1—O5—N8101.86 (13)C1—C2—C3—N2−0.3 (4)
O4—Zn1—O5—N8−3.63 (13)C3—N2—C4—N3178.6 (2)
N4—Zn1—N1—C1126.33 (14)C3—N2—C4—N10.4 (3)
O1W—Zn1—N1—C132.92 (15)C1—N1—C4—N3−178.6 (2)
O5—Zn1—N1—C1−61.49 (19)Zn1—N1—C4—N33.6 (3)
O1—Zn1—N1—C1−147.00 (14)C1—N1—C4—N2−0.4 (3)
O4—Zn1—N1—C1−50.43 (15)Zn1—N1—C4—N2−178.24 (15)
N4—Zn1—N1—C4−55.78 (17)C8—N4—C5—C6−1.3 (3)
O1W—Zn1—N1—C4−149.19 (16)Zn1—N4—C5—C6−178.4 (2)
O5—Zn1—N1—C4116.40 (17)N4—C5—C6—C7−0.6 (4)
O1—Zn1—N1—C430.90 (17)C8—N5—C7—C6−0.1 (4)
O4—Zn1—N1—C4127.46 (17)C5—C6—C7—N51.3 (4)
N1—Zn1—N4—C5−27.69 (17)C7—N5—C8—N6176.5 (2)
O1W—Zn1—N4—C568.58 (16)C7—N5—C8—N4−2.1 (3)
O5—Zn1—N4—C5157.14 (15)C5—N4—C8—N6−175.85 (19)
O1—Zn1—N4—C5−126.05 (16)Zn1—N4—C8—N60.9 (3)
O4—Zn1—N4—C5140.6 (3)C5—N4—C8—N52.8 (3)
N1—Zn1—N4—C8155.57 (14)Zn1—N4—C8—N5179.52 (15)
O1W—Zn1—N4—C8−108.16 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O2i0.83 (1)1.99 (2)2.776 (2)158 (3)
O1w—H12···N2ii0.84 (1)1.94 (1)2.754 (2)165 (3)
N3—H31···O10.87 (1)2.23 (2)2.989 (3)146 (2)
N3—H32···O5iii0.86 (1)2.34 (2)3.133 (3)152 (3)
N6—H61···O10.87 (1)2.37 (3)3.010 (2)131 (3)
N6—H61···O50.87 (1)2.43 (2)3.122 (3)137 (3)
N6—H62···O1iv0.87 (1)2.41 (2)3.192 (2)150 (3)
N6—H62···O3iv0.87 (1)2.45 (2)3.265 (3)156 (3)

Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y−1/2, z; (iii) x−1/2, y+1/2, z; (iv) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2204).

References

  • Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2002). Acta Cryst. E58, m55–m57.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Pike, R. D., Lim, M. J., Wilcox, E. A. L. & Tronic, T. A. (2006). J. Chem. Crystallogr.11, 781–791.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC and Rigaku (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography