PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1241.
Published online 2010 September 11. doi:  10.1107/S1600536810035658
PMCID: PMC2983320

Dibromido(6-methyl-2,2′-bipyridine-κ2 N,N′)zinc(II)

Abstract

In the title compound, [ZnBr2(C11H10N2)], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from a 6-methyl-2,2′-bipyridine ligand and two terminal Br atoms. Weak inter­molecular C—H(...)Br hydrogen bonds and π–π stacking inter­actions between the pyridine rings [centroid–centroid distances = 3.763 (5) and 3.835 (6) Å] contribute to crystal-packing effects.

Related literature

For unusual coordination geometries on transition metal atoms, see: Beeston et al. (1998 [triangle]), Meyer et al. (1999 [triangle]); For related literature, see: Ahmadi et al. (2009 [triangle]); Ahmadi, Ebadi et al. (2008 [triangle]); Ahmadi, Kalateh et al. (2008 [triangle]); Alizadeh et al. (2009 [triangle]); Amani et al. (2009 [triangle]); Newkome et al. (1982 [triangle]); Onggo et al. (1990 [triangle], 2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1241-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C11H10N2)]
  • M r = 395.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1241-efi1.jpg
  • a = 7.6445 (7) Å
  • b = 9.7487 (11) Å
  • c = 17.8347 (18) Å
  • β = 96.972 (8)°
  • V = 1319.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.89 mm−1
  • T = 298 K
  • 0.46 × 0.30 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.076, T max = 0.310
  • 15389 measured reflections
  • 3567 independent reflections
  • 2498 reflections with I > 2σ(I)
  • R int = 0.119

Refinement

  • R[F 2 > 2σ(F 2)] = 0.086
  • wR(F 2) = 0.207
  • S = 1.13
  • 3567 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 2.14 e Å−3
  • Δρmin = −1.14 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035658/jj2041sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035658/jj2041Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

supplementary crystallographic information

Comment

Sterically hindered ligands such as 6-Methyl-2, 2'-bipyridine (6-mbipy) often convey unusual coordination geometries or oxidation states on transition metal centers (Beeston et al., 1998; Meyer et al. 1999). Numerous complexes with 6-mbipy have been prepared, such as that of mercury (Ahmadi, Ebadi et al., 2008), platin (Amani et al., 2009), lead (Ahmadi et al., 2009), palladium (Newkome et al., 1982), ruthenium (Onggo, Scudder et al., 2005) and iron (Onggo, Hook et al., 1990). Here, we report the synthesis and structure of the title compound, [Zn(C11H10N2)Br2].

In the title compound (Fig. 1), the ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from one 6-methyl-2,2'-bipyridine and two terminal Br atoms. The Zn—N and Zn—Br bond lengths and angles are within the normal range of [ZnCl2(6-mbpy)], (Ahmadi, Kalateh et al., 2008) and [ZnBr2(6,6'-dmbpy)], (Alizadeh et al., 2009) [where 6,6'-dmbpy is 6,6'-dimethyl-2, 2'-bipyridine] respectively.

In the crystal structure, weak intermolecular C—H···Br hydrogen bonds (Table 2) and π···π stacking interactions (Fig. 2, Table 1) between the pyridine rings,Cg1—Cg2 and Cg2—Cg3 contribute to crystal packing effects [where Cg1, Cg2 and Cg3 are centroids of the rings (Zn1/N1/C6—C7/N2), (N1/C2—C6) and (N2/C7—C11), respectively].

Experimental

For the preparation of the title compound, a solution of 6-methyl-2,2'-bipyridine (0.16 g, 0.15 ml 0.94 mmol) in methanol (10 ml) was added to a solution of ZnBr2 (0.21 g, 0.94 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield 0.28 g, 75.3%).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93Å for aromatics H, C—H = 0.96Å for methyl and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq. High values for Δρ are related to the poor quality of the crystals.

Figures

Fig. 1.
The molecular structure of the title molecule, [Zn(C11H10N2)Br2], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Unit-cell packing diagram for [Zn(C11H10N2)Br2]. Dashed lines indicate weak C—H···Br intermolecular interactions.

Crystal data

[ZnBr2(C11H10N2)]F(000) = 760
Mr = 395.40Dx = 1.991 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 985 reflections
a = 7.6445 (7) Åθ = 2.3–29.4°
b = 9.7487 (11) ŵ = 7.89 mm1
c = 17.8347 (18) ÅT = 298 K
β = 96.972 (8)°Prism, colorless
V = 1319.3 (2) Å30.46 × 0.30 × 0.15 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3567 independent reflections
Radiation source: fine-focus sealed tube2498 reflections with I > 2σ(I)
graphiteRint = 0.119
[var phi] and ω scansθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −8→10
Tmin = 0.076, Tmax = 0.310k = −13→13
15389 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0565P)2 + 8.4252P] where P = (Fo2 + 2Fc2)/3
3567 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 2.14 e Å3
0 restraintsΔρmin = −1.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.651 (2)0.9482 (15)0.2106 (6)0.099 (5)
H1A0.75900.90420.23020.119*
H1B0.55940.88050.20120.119*
H1C0.61831.01350.24680.119*
C20.6740 (14)1.0200 (10)0.1390 (6)0.063 (2)
C30.6519 (15)1.1604 (12)0.1292 (7)0.074 (3)
H30.62271.21530.16850.089*
C40.6738 (15)1.2162 (11)0.0608 (8)0.075 (3)
H40.65591.30970.05270.090*
C50.7221 (13)1.1355 (10)0.0041 (6)0.063 (2)
H50.74151.1739−0.04190.076*
C60.7415 (11)0.9971 (9)0.0160 (5)0.051 (2)
C70.7873 (11)0.8977 (10)−0.0412 (5)0.0509 (19)
C80.8184 (14)0.9373 (12)−0.1129 (6)0.070 (3)
H80.81681.0293−0.12680.084*
C90.8523 (16)0.8339 (15)−0.1639 (6)0.080 (3)
H90.87350.8568−0.21260.096*
C100.8542 (18)0.7025 (14)−0.1426 (6)0.080 (3)
H100.87360.6339−0.17680.097*
C110.8280 (15)0.6692 (12)−0.0710 (6)0.072 (3)
H110.83440.5776−0.05630.087*
N10.7182 (10)0.9406 (7)0.0849 (4)0.0508 (17)
N20.7930 (10)0.7647 (8)−0.0208 (4)0.0530 (17)
Br11.04853 (15)0.69883 (13)0.15998 (7)0.0756 (4)
Br20.54078 (15)0.58954 (13)0.11809 (7)0.0767 (4)
Zn10.76827 (14)0.73342 (11)0.09099 (6)0.0525 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.147 (13)0.102 (10)0.056 (6)0.016 (9)0.040 (8)−0.011 (6)
C20.063 (6)0.057 (5)0.068 (6)0.004 (5)0.010 (5)−0.004 (5)
C30.061 (6)0.070 (7)0.088 (8)0.006 (5)0.001 (5)−0.018 (6)
C40.071 (7)0.051 (5)0.102 (9)0.003 (5)0.005 (6)0.013 (6)
C50.063 (6)0.056 (5)0.070 (6)0.003 (5)0.008 (5)0.015 (5)
C60.038 (4)0.058 (5)0.056 (5)−0.005 (4)−0.001 (3)0.021 (4)
C70.045 (4)0.063 (5)0.043 (4)−0.006 (4)0.002 (3)0.009 (4)
C80.060 (6)0.089 (7)0.058 (6)−0.018 (5)0.002 (5)0.028 (5)
C90.076 (7)0.122 (11)0.046 (5)−0.016 (7)0.018 (5)−0.005 (6)
C100.091 (8)0.098 (9)0.056 (6)−0.006 (7)0.021 (6)−0.010 (6)
C110.081 (7)0.073 (7)0.068 (6)0.007 (6)0.029 (6)−0.004 (5)
N10.052 (4)0.050 (4)0.052 (4)0.004 (3)0.015 (3)0.008 (3)
N20.059 (4)0.059 (4)0.042 (3)−0.001 (4)0.012 (3)0.008 (3)
Br10.0576 (6)0.0870 (8)0.0815 (7)0.0001 (5)0.0052 (5)0.0382 (6)
Br20.0673 (7)0.0768 (7)0.0878 (8)−0.0131 (5)0.0173 (6)0.0197 (6)
Zn10.0560 (6)0.0509 (6)0.0528 (6)0.0038 (5)0.0149 (4)0.0129 (4)

Geometric parameters (Å, °)

C1—C21.486 (16)C7—N21.346 (11)
C1—H1A0.9600C7—C81.383 (12)
C1—H1B0.9600C8—C91.402 (17)
C1—H1C0.9600C8—H80.9300
C2—N11.312 (12)C9—C101.335 (18)
C2—C31.388 (15)C9—H90.9300
C3—C41.364 (17)C10—C111.355 (15)
C3—H30.9300C10—H100.9300
C4—C51.368 (16)C11—N21.342 (13)
C4—H40.9300C11—H110.9300
C5—C61.370 (13)N1—Zn12.057 (7)
C5—H50.9300N2—Zn12.048 (7)
C6—N11.378 (10)Br1—Zn12.3617 (16)
C6—C71.480 (13)Br2—Zn12.3300 (15)
Cg1···Cg2i3.762 (5)Cg2···Cg3ii3.835 (6)
C2—C1—H1A109.5C7—C8—C9117.7 (10)
C2—C1—H1B109.5C7—C8—H8121.2
H1A—C1—H1B109.5C9—C8—H8121.2
C2—C1—H1C109.5C10—C9—C8120.1 (10)
H1A—C1—H1C109.5C10—C9—H9120.0
H1B—C1—H1C109.5C8—C9—H9120.0
N1—C2—C3121.8 (10)C9—C10—C11120.0 (11)
N1—C2—C1115.0 (9)C9—C10—H10120.0
C3—C2—C1123.2 (10)C11—C10—H10120.0
C4—C3—C2118.7 (11)N2—C11—C10121.8 (11)
C4—C3—H3120.7N2—C11—H11119.1
C2—C3—H3120.7C10—C11—H11119.1
C3—C4—C5120.3 (10)C2—N1—C6119.5 (8)
C3—C4—H4119.8C2—N1—Zn1127.1 (6)
C5—C4—H4119.8C6—N1—Zn1113.3 (6)
C4—C5—C6119.1 (10)C11—N2—C7119.4 (8)
C4—C5—H5120.5C11—N2—Zn1126.6 (7)
C6—C5—H5120.5C7—N2—Zn1113.8 (6)
C5—C6—N1120.5 (9)N2—Zn1—N180.9 (3)
C5—C6—C7124.6 (8)N2—Zn1—Br2116.8 (2)
N1—C6—C7114.9 (8)N1—Zn1—Br2117.6 (2)
N2—C7—C8121.0 (9)N2—Zn1—Br1110.1 (2)
N2—C7—C6116.5 (7)N1—Zn1—Br1108.6 (2)
C8—C7—C6122.4 (9)Br2—Zn1—Br1117.30 (6)
N1—C2—C3—C41.2 (17)C5—C6—N1—Zn1−176.7 (7)
C1—C2—C3—C4−179.0 (12)C7—C6—N1—Zn13.4 (9)
C2—C3—C4—C5−2.1 (18)C10—C11—N2—C7−1.4 (17)
C3—C4—C5—C62.5 (17)C10—C11—N2—Zn1−175.1 (9)
C4—C5—C6—N1−2.0 (15)C8—C7—N2—C11−0.5 (14)
C4—C5—C6—C7177.9 (9)C6—C7—N2—C11177.8 (9)
C5—C6—C7—N2−177.1 (9)C8—C7—N2—Zn1174.0 (7)
N1—C6—C7—N22.9 (11)C6—C7—N2—Zn1−7.7 (10)
C5—C6—C7—C81.2 (14)C11—N2—Zn1—N1−178.6 (9)
N1—C6—C7—C8−178.8 (8)C7—N2—Zn1—N17.4 (6)
N2—C7—C8—C91.3 (15)C11—N2—Zn1—Br2−62.2 (9)
C6—C7—C8—C9−176.9 (9)C7—N2—Zn1—Br2123.7 (6)
C7—C8—C9—C10−0.1 (17)C11—N2—Zn1—Br174.8 (9)
C8—C9—C10—C11−2(2)C7—N2—Zn1—Br1−99.2 (6)
C9—C10—C11—N23(2)C2—N1—Zn1—N2176.6 (9)
C3—C2—N1—C6−0.8 (15)C6—N1—Zn1—N2−5.8 (6)
C1—C2—N1—C6179.5 (10)C2—N1—Zn1—Br261.0 (9)
C3—C2—N1—Zn1176.7 (8)C6—N1—Zn1—Br2−121.3 (5)
C1—C2—N1—Zn1−3.0 (14)C2—N1—Zn1—Br1−75.2 (8)
C5—C6—N1—C21.2 (13)C6—N1—Zn1—Br1102.5 (6)
C7—C6—N1—C2−178.7 (8)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+2, −y+2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1C···Br1iii0.962.863.805 (14)169
C8—H8···Br1ii0.932.933.812 (12)159

Symmetry codes: (iii) −x+3/2, y+1/2, −z+1/2; (ii) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2041).

References

  • Ahmadi, R., Ebadi, A., Kalateh, K., Norouzi, A. & Amani, V. (2008). Acta Cryst. E64, m1407. [PMC free article] [PubMed]
  • Ahmadi, R., Kalateh, K., Alizadeh, R., Khoshtarkib, Z. & Amani, V. (2009). Acta Cryst. E65, m1169–m1170. [PMC free article] [PubMed]
  • Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266. [PMC free article] [PubMed]
  • Alizadeh, R., Khoshtarkib, Z., Chegeni, K., Ebadi, A. & Amani, V. (2009). Acta Cryst. E65, m1311. [PMC free article] [PubMed]
  • Amani, V., Safari, N., Khavasi, H. R. & Akkurt, M. (2009). Polyhedron, 28, 3026–3030.
  • Beeston, R. F., Aldridge, W. S., Treadway, J. A., Fitzgerald, M. C., Degraff, B. A. & Stitzet, S. E. (1998). Inorg. Chem.37, 4368–4379. [PubMed]
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Meyer, M., Gary, A. M. A., Buchecker, C. O. D. & Sauvage, J. P. (1999). Inorg. Chem.38, 2279–2287.
  • Newkome, G. R., Fronczek, F. R., Gupta, V. K., Puckett, W. E., Pantaleo, D. C. & Kiefer, G. E. (1982). J. Am. Chem. Soc.104, 1782–1783.
  • Onggo, D., Hook, J. M., Rae, A. D. & Goodwin, H. A. (1990). Inorg. Chim. Acta, 173, 19–30.
  • Onggo, D., Scudder, M. L., Craig, D. C. & Goodwin, H. A. (2005). J. Mol. Struct.738, 129–136.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography