PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2661.
Published online 2010 September 30. doi:  10.1107/S160053681003802X
PMCID: PMC2983317

Methyl 2-meth­oxy-4-{[2-(4-nitro­phen­yl)hydrazinyl­idene]meth­yl}benzoate

Abstract

The mol­ecule of the title Schiff base compound, C16H15N3O5, obtained from a condensation reaction of 4-acet­oxy-3-meth­oxy­benzaldehyde and 4-nitro­phenyl­hydrazine, adopts an E geometry with respect to the C=N double bond. The mol­ecule is roughly planar, with the two benzene rings twisted slightly with respect to each other by a dihedral angle of 6.90 (9)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds link centrosymmetrically related pairs of mol­ecules, forming dimers of R 2 2(22) graph-set motif. The dimers are further connected through slipped π–π inter­actions between symmetry-related benzene rings [centroid–centroid distance of 3.646 (1) Å, offset angle of 15.4°].

Related literature

For potential applications of hydrazone derivatives, see: Okabe et al. (1993 [triangle]). For related structures, see: Szczesna & Urbanczyk-Lipkowska (2002 [triangle]); Zhen & Han (2005 [triangle]); Kuleshova et al. (2003 [triangle]); Baughman et al. (2004 [triangle]). For hydrogen-bond motifs, see: Etter et al. (1990 [triangle]); Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2661-scheme1.jpg

Experimental

Crystal data

  • C16H15N3O5
  • M r = 329.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2661-efi1.jpg
  • a = 8.5983 (7) Å
  • b = 14.6982 (9) Å
  • c = 13.2096 (10) Å
  • β = 107.860 (9)°
  • V = 1589.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.971, T max = 0.976
  • 6773 measured reflections
  • 3255 independent reflections
  • 1397 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.072
  • S = 0.72
  • 3255 reflections
  • 219 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003802X/dn2604sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003802X/dn2604Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As some phenylhydrazone derivatives show potential application in biochemistry(Okabe et al.,1993), phenylhydrazone has recently attracted our attention. In this paper, we report the synthesis and crystal structure of the title compound.

The molecule adopts an E geometry with respect to the C=N double bond (Fig. 1). The methoxybenzene and the nitrobenzene rings are roughly planar, with however the two benzene rings slightly twisted with respect to each other by a dihedral angle of 6.90 (9)°. The geometry within the hydrazone moiety agrees with related compound found in the literature (Szczesna & Urbanczyk-Lipkowska, 2002; Zhen & Han, 2005; Kuleshova et al., 2003; Baughman et al., 2004.

Intermolecular N—H···O hydrogen bonds link the molecule two by two to form dimer (Table 1, Fig. 2) with R22(22) graph set motif (Etter et al., 1990); Bernstein et al., 1994). The dimers are connected through slippest π-π interactions involving the symmetry related (1-x, -y, -z) C1-C6 and C8-C13 benzene rings with a centroid to centroid distance of 3.646 (1)Å and an interplanar distance of 3.515Å resulting in an offset angle of 15.4°.

Experimental

4-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, 4-acetoxy-3-methoxybenzaldehyde(1 mmol, 0.194 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), red single crystals of (I) was obtained after 3 d.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
Molecular view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of dimer through N-H···O hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) -x+2, -y, -z]

Crystal data

C16H15N3O5F(000) = 688
Mr = 329.31Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1694 reflections
a = 8.5983 (7) Åθ = 3.2–26.3°
b = 14.6982 (9) ŵ = 0.10 mm1
c = 13.2096 (10) ÅT = 293 K
β = 107.860 (9)°Block, red
V = 1589.0 (2) Å30.23 × 0.20 × 0.19 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3255 independent reflections
Radiation source: fine-focus sealed tube1397 reflections with I > 2σ(I)
graphiteRint = 0.029
ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −10→10
Tmin = 0.971, Tmax = 0.976k = −15→18
6773 measured reflectionsl = −16→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.72w = 1/[σ2(Fo2) + (0.032P)2] where P = (Fo2 + 2Fc2)/3
3255 reflections(Δ/σ)max = 0.007
219 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3583 (2)0.28271 (10)0.40773 (12)0.0934 (5)
O20.41338 (19)0.17034 (10)0.51701 (12)0.0912 (5)
O30.94760 (16)−0.07061 (8)−0.28742 (9)0.0600 (4)
O40.84502 (16)0.09303 (8)−0.37261 (9)0.0560 (4)
O51.10849 (17)0.12748 (8)−0.29655 (11)0.0628 (4)
N10.66329 (16)0.00919 (9)0.15774 (11)0.0493 (4)
H10.6925−0.04610.17500.059*
N20.68044 (17)0.04452 (9)0.06596 (11)0.0451 (4)
N30.4121 (2)0.20643 (13)0.43252 (14)0.0649 (5)
C10.6057 (2)0.02353 (12)0.32125 (14)0.0522 (5)
H1B0.6504−0.03390.34080.063*
C20.5452 (2)0.07193 (13)0.38904 (14)0.0553 (5)
H2B0.54950.04780.45490.066*
C30.4777 (2)0.15662 (12)0.35965 (15)0.0468 (5)
C40.4691 (2)0.19305 (11)0.26147 (14)0.0495 (5)
H4A0.42150.24980.24160.059*
C50.5311 (2)0.14503 (11)0.19376 (14)0.0468 (5)
H5A0.52660.16960.12800.056*
C60.6006 (2)0.06010 (12)0.22253 (14)0.0417 (4)
C70.7483 (2)−0.00733 (11)0.01437 (13)0.0452 (5)
H7A0.7806−0.06540.04030.054*
C80.7767 (2)0.02182 (11)−0.08375 (13)0.0403 (4)
C90.85046 (19)−0.03850 (11)−0.13560 (13)0.0434 (5)
H9A0.8822−0.0956−0.10610.052*
C100.8777 (2)−0.01552 (11)−0.23029 (14)0.0434 (5)
C110.8294 (2)0.06963 (12)−0.27239 (13)0.0449 (5)
C120.7565 (2)0.13013 (11)−0.22286 (15)0.0518 (5)
H12A0.72460.1870−0.25280.062*
C130.7300 (2)0.10665 (11)−0.12796 (15)0.0516 (5)
H13A0.68090.1479−0.09390.062*
C140.9936 (2)−0.15954 (11)−0.24715 (14)0.0632 (6)
H14A1.0419−0.1913−0.29350.095*
H14B0.8987−0.1920−0.24330.095*
H14C1.0714−0.1554−0.17740.095*
C150.9935 (3)0.12176 (12)−0.37443 (17)0.0507 (5)
C160.9907 (3)0.14511 (15)−0.48491 (15)0.0823 (7)
H16A0.90300.1868−0.51550.123*
H16B0.97480.0907−0.52710.123*
H16C1.09270.1728−0.48320.123*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1226 (15)0.0764 (11)0.0863 (11)0.0205 (11)0.0397 (10)−0.0154 (10)
O20.1189 (14)0.1058 (12)0.0648 (10)−0.0012 (10)0.0517 (10)−0.0052 (9)
O30.0790 (10)0.0505 (7)0.0600 (9)0.0083 (7)0.0352 (8)0.0004 (7)
O40.0524 (9)0.0728 (9)0.0439 (8)−0.0030 (8)0.0165 (7)0.0089 (7)
O50.0551 (9)0.0710 (9)0.0609 (9)−0.0025 (8)0.0159 (8)0.0054 (8)
N10.0584 (11)0.0466 (9)0.0481 (10)0.0032 (8)0.0239 (9)0.0052 (8)
N20.0454 (10)0.0511 (9)0.0398 (9)−0.0051 (8)0.0144 (8)0.0022 (8)
N30.0633 (13)0.0740 (13)0.0596 (13)−0.0106 (11)0.0220 (11)−0.0172 (11)
C10.0561 (14)0.0545 (11)0.0498 (12)0.0049 (10)0.0219 (11)0.0108 (10)
C20.0574 (14)0.0680 (13)0.0445 (12)−0.0063 (11)0.0214 (11)0.0074 (11)
C30.0452 (13)0.0533 (12)0.0450 (12)−0.0092 (10)0.0186 (10)−0.0085 (10)
C40.0509 (14)0.0436 (11)0.0530 (12)−0.0085 (10)0.0145 (11)−0.0036 (10)
C50.0546 (13)0.0444 (11)0.0428 (11)−0.0092 (10)0.0172 (10)0.0019 (9)
C60.0398 (11)0.0472 (11)0.0379 (11)−0.0100 (9)0.0117 (9)−0.0017 (9)
C70.0427 (13)0.0459 (11)0.0464 (12)−0.0054 (10)0.0131 (10)−0.0006 (9)
C80.0397 (12)0.0405 (10)0.0408 (11)−0.0068 (9)0.0124 (10)−0.0009 (9)
C90.0434 (13)0.0392 (10)0.0472 (12)−0.0011 (9)0.0131 (10)−0.0007 (9)
C100.0409 (12)0.0441 (11)0.0458 (12)−0.0023 (10)0.0144 (10)−0.0066 (10)
C110.0417 (12)0.0540 (12)0.0386 (11)−0.0017 (10)0.0117 (10)0.0044 (10)
C120.0548 (13)0.0447 (11)0.0599 (13)0.0036 (10)0.0238 (11)0.0082 (10)
C130.0561 (13)0.0457 (11)0.0592 (13)0.0017 (10)0.0268 (11)−0.0035 (10)
C140.0789 (16)0.0483 (11)0.0683 (14)0.0097 (11)0.0316 (13)−0.0045 (11)
C150.0583 (14)0.0454 (11)0.0525 (13)0.0064 (11)0.0232 (12)0.0019 (10)
C160.0886 (18)0.1103 (17)0.0573 (14)−0.0082 (15)0.0361 (13)0.0100 (13)

Geometric parameters (Å, °)

O1—N31.2188 (18)C5—C61.386 (2)
O2—N31.2326 (18)C5—H5A0.9300
O3—C101.3655 (18)C7—C81.455 (2)
O3—C141.4210 (18)C7—H7A0.9300
O4—C151.352 (2)C8—C131.383 (2)
O4—C111.4135 (18)C8—C91.387 (2)
O5—C151.191 (2)C9—C101.383 (2)
N1—C61.3663 (18)C9—H9A0.9300
N1—N21.3678 (16)C10—C111.381 (2)
N1—H10.8600C11—C121.365 (2)
N2—C71.2766 (18)C12—C131.385 (2)
N3—C31.454 (2)C12—H12A0.9300
C1—C21.366 (2)C13—H13A0.9300
C1—C61.399 (2)C14—H14A0.9600
C1—H1B0.9300C14—H14B0.9600
C2—C31.378 (2)C14—H14C0.9600
C2—H2B0.9300C15—C161.492 (2)
C3—C41.384 (2)C16—H16A0.9600
C4—C51.369 (2)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C10—O3—C14117.25 (13)C9—C8—C7118.60 (16)
C15—O4—C11117.01 (14)C10—C9—C8121.35 (16)
C6—N1—N2121.19 (14)C10—C9—H9A119.3
C6—N1—H1119.4C8—C9—H9A119.3
N2—N1—H1119.4O3—C10—C11116.35 (16)
C7—N2—N1115.96 (14)O3—C10—C9125.47 (16)
O1—N3—O2122.44 (18)C11—C10—C9118.18 (16)
O1—N3—C3118.54 (18)C12—C11—C10121.53 (17)
O2—N3—C3119.02 (19)C12—C11—O4118.68 (16)
C2—C1—C6120.11 (17)C10—C11—O4119.64 (16)
C2—C1—H1B119.9C11—C12—C13119.91 (16)
C6—C1—H1B119.9C11—C12—H12A120.0
C1—C2—C3119.87 (17)C13—C12—H12A120.0
C1—C2—H2B120.1C8—C13—C12120.00 (16)
C3—C2—H2B120.1C8—C13—H13A120.0
C2—C3—C4120.70 (17)C12—C13—H13A120.0
C2—C3—N3118.93 (18)O3—C14—H14A109.5
C4—C3—N3120.36 (18)O3—C14—H14B109.5
C5—C4—C3119.54 (17)H14A—C14—H14B109.5
C5—C4—H4A120.2O3—C14—H14C109.5
C3—C4—H4A120.2H14A—C14—H14C109.5
C4—C5—C6120.43 (16)H14B—C14—H14C109.5
C4—C5—H5A119.8O5—C15—O4123.01 (18)
C6—C5—H5A119.8O5—C15—C16126.1 (2)
N1—C6—C5122.77 (16)O4—C15—C16110.93 (19)
N1—C6—C1117.89 (16)C15—C16—H16A109.5
C5—C6—C1119.33 (17)C15—C16—H16B109.5
N2—C7—C8121.93 (16)H16A—C16—H16B109.5
N2—C7—H7A119.0C15—C16—H16C109.5
C8—C7—H7A119.0H16A—C16—H16C109.5
C13—C8—C9119.02 (16)H16B—C16—H16C109.5
C13—C8—C7122.37 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.862.293.0068 (19)141

Symmetry codes: (i) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2604).

References

  • Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106. [PubMed]
  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  • Bruker (1998). SMART (Version 5.628), SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kuleshova, L. N., Antipin, M. Yu., Khrustalev, V. N., Gusev, D. V., Grintselev-Knyazev, G. V. & Bobrikova, E. S. (2003). Crystallogr. Rep.48, 594–601.
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Szczesna, B. & Urbanczyk-Lipkowska, Z. (2002). New J. Chem.26, 243–249
  • Zhen, X.-L. & Han, J.-R. (2005). Acta Cryst. E61, o3721–o3722.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography