PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1293–m1294.
Published online 2010 September 25. doi:  10.1107/S1600536810036597
PMCID: PMC2983314

Bis(2-amino-3-methyl­pyridine)­dichlorido­cobalt(II)

Abstract

In the title compound, [CoCl2(C6H8N2)2], the CoII ion is four-coordinated by two pyridine N atoms from the 2-amino-3-methyl­pyridine ligands and two chloride ions in a distorted tetra­hedral geometry. A weak intra­molecular N—H(...)Cl inter­action occurs. The crystal packing is stabilized by inter­molecular N—H(...)Cl and C—H(...)Cl hydrogen-bond inter­actions.

Related literature

2-Amino-3-methyl­pyridine (ampy) can potentially coordinate to metal centers through the N atom of the amino group (Chen et al., 2005 [triangle]) or the pyridyl nitro­gen atom (Amani Komaei et al., 1999 [triangle]; Ziegler et al., 2000 [triangle]; Castillo et al., 2001 [triangle]). For the structures of [(ampyH)2CoX 4] proton-transfer compounds (X = Cl, Br), see: Carnevale et al. (2010 [triangle]). Polar metal–halogen bonds are good hydrogen-bond acceptors, see: Aullón et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1293-scheme1.jpg

Experimental

Crystal data

  • [CoCl2(C6H8N2)2]
  • M r = 346.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1293-efi1.jpg
  • a = 9.3768 (19) Å
  • b = 13.841 (3) Å
  • c = 12.175 (2) Å
  • β = 100.31 (3)°
  • V = 1554.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.44 mm−1
  • T = 298 K
  • 0.50 × 0.38 × 0.30 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical shape of crystal determined optically (XRED and XSHAPE; Stoe & Cie, 2005 [triangle])T min = 0.517, T max = 0.642
  • 11996 measured reflections
  • 4174 independent reflections
  • 2803 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.132
  • S = 1.07
  • 4174 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036597/jj2058sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036597/jj2058Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors wish to acknowledge Iran University of Science and Technology (IUST) for financial support.

supplementary crystallographic information

Comment

2-amino-3-methylpyridine (ampy) is a common ligand and potentially can coordinate to metal centers through the N atom of amino group (Chen et al., 2005) or the pyridyl nitrogen atom (Amani Komaei et al., 1999; Ziegler et al., 2000; Castillo et al., 2001). Recently, the structure of [(ampyH)2CoX4] proton transfer compounds (X=Cl, Br) have been reported (Carnevale et al., 2010). Polar metal-halogen bonds are good hydrogen bond acceptors (Aullón et al., 1998). We report herein the synthesis and molecular structure of the title compound, [Co(ampy)2Cl2]. The compound is mononuclear with the cobalt (II) ion coordinated by two pyridyl nitrogen atoms from two ampy ligands and two chloride ions in a distorted tetrahedral geometry (Fig. 1). The Co—N and Co—Cl bond lengths and angles are within normal ranges (Table 1). The dihedral angle formed between the least squares planes of two pyridine rings is 69.5 (5)°. Crystal packing is stabilized by weak intramolecular N–H···Cl and intermolecular N—H···Cl, C—H···Cl hydrogen bond interactions (Table 2). Cl1 forms a bifurcated acceptor bond with H4A and H2B from nearby neighbors (Fig. 2).

Experimental

A solution of 2-amino-3-methylpyridine (0.1 ml, 1 mmol) in ethanol (10 ml) was added to a solution of CoCl2.6H2O (0.12 g, 0.5 mmol) in water (10 ml) and stirred for 20 min at 50 °C. Slow evaporation of the resulting solution gave a blue precipitate which was then recrystallized from ethanol and acetonitrile (3:1 v/v). After one week, blue crystals of the title compound suitable for X-ray analysis were isolated (yield; 0.1583 g, 91.4% based on Co, decomposition > 168 °C).

Refinement

All of the H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å (CH), with C—H = 0.96Å (CH3), and Uiso(H) = 1.2, 1.49Ueq(C), and with N—H = 0.86Å (NH2) and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of [Co(ampy)2Cl2] with displacement ellipsoids drawn at 30% probability level.
Fig. 2.
The packing diagram of [Co(ampy)2Cl2] showing hydrogen bonding as blue dashed lines.

Crystal data

[CoCl2(C6H8N2)2]F(000) = 708.0
Mr = 346.12Dx = 1.479 Mg m3
Monoclinic, P21/nMelting point: 441 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.3768 (19) ÅCell parameters from 4174 reflections
b = 13.841 (3) Åθ = 2.3–29.2°
c = 12.175 (2) ŵ = 1.44 mm1
β = 100.31 (3)°T = 298 K
V = 1554.6 (5) Å3Block, blue
Z = 40.5 × 0.38 × 0.3 mm

Data collection

Stoe IPDS II diffractometer4174 independent reflections
Radiation source: fine-focus sealed tube2803 reflections with I > 2σ(I)
graphiteRint = 0.055
Detector resolution: 0.15 pixels mm-1θmax = 29.2°, θmin = 2.3°
rotation method scansh = −12→10
Absorption correction: numerical shape of crystal determined optically (X-RED and X-SHAPE; Stoe & Cie, 2005)k = −18→18
Tmin = 0.517, Tmax = 0.642l = −16→16
11996 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0528P)2 + 0.6654P] where P = (Fo2 + 2Fc2)/3
4174 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.14951 (4)0.99824 (3)0.31175 (3)0.04765 (14)
Cl20.09365 (12)1.14810 (7)0.35642 (8)0.0730 (3)
Cl10.24844 (11)0.99925 (9)0.15526 (7)0.0738 (3)
N30.2899 (3)0.93750 (18)0.43978 (19)0.0450 (6)
N1−0.0296 (3)0.9120 (2)0.2839 (2)0.0484 (6)
C5−0.0369 (4)0.8380 (3)0.3553 (3)0.0579 (8)
H50.03760.83100.41640.069*
C1−0.1395 (3)0.9237 (3)0.1967 (2)0.0509 (7)
C70.3589 (3)0.8548 (2)0.4302 (3)0.0490 (7)
C2−0.2593 (4)0.8599 (3)0.1783 (3)0.0552 (8)
C90.4738 (4)0.8617 (3)0.6192 (3)0.0641 (9)
H90.53630.83670.68050.077*
C110.3132 (4)0.9843 (2)0.5399 (3)0.0541 (8)
H110.26541.04230.54640.065*
C6−0.3807 (4)0.8754 (4)0.0808 (3)0.0829 (13)
H6A−0.45670.82960.08440.124*
H6B−0.34490.86650.01240.124*
H6C−0.41790.93980.08350.124*
C80.4538 (4)0.8119 (3)0.5215 (3)0.0546 (8)
N2−0.1321 (4)0.9997 (2)0.1281 (3)0.0756 (10)
H2A−0.05931.03850.14090.091*
H2B−0.20031.00930.07180.091*
C100.4044 (4)0.9485 (3)0.6308 (3)0.0664 (10)
H100.41950.98140.69850.080*
C3−0.2594 (4)0.7855 (3)0.2517 (3)0.0680 (10)
H3−0.33590.74180.24100.082*
C4−0.1470 (4)0.7738 (3)0.3422 (3)0.0705 (10)
H4−0.14770.72320.39230.085*
N40.3322 (4)0.8108 (3)0.3292 (3)0.0793 (10)
H4A0.27300.83650.27490.095*
H4B0.37450.75720.31930.095*
C120.5285 (5)0.7188 (3)0.5056 (4)0.0809 (12)
H12A0.58940.70050.57440.121*
H12B0.58660.72670.44880.121*
H12C0.45740.66930.48330.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0456 (2)0.0545 (2)0.0391 (2)−0.0008 (2)−0.00267 (15)0.00612 (18)
Cl20.0862 (7)0.0581 (5)0.0698 (5)0.0198 (5)0.0008 (5)0.0085 (4)
Cl10.0666 (5)0.1115 (8)0.0421 (4)−0.0138 (6)0.0066 (4)0.0074 (5)
N30.0440 (13)0.0488 (14)0.0392 (12)0.0019 (11)−0.0004 (10)0.0034 (10)
N10.0436 (14)0.0585 (15)0.0405 (12)−0.0034 (11)0.0005 (10)0.0044 (11)
C50.0514 (18)0.075 (2)0.0442 (16)−0.0008 (17)0.0012 (14)0.0128 (15)
C10.0452 (16)0.0637 (19)0.0419 (15)−0.0024 (14)0.0024 (13)0.0021 (14)
C70.0448 (16)0.0516 (17)0.0499 (16)−0.0021 (14)0.0059 (13)−0.0013 (14)
C20.0454 (16)0.076 (2)0.0431 (16)−0.0095 (16)0.0038 (13)0.0002 (15)
C90.058 (2)0.078 (2)0.0525 (19)0.0033 (18)−0.0009 (16)0.0191 (18)
C110.0531 (17)0.060 (2)0.0454 (15)−0.0001 (15)−0.0011 (13)−0.0006 (14)
C60.057 (2)0.121 (4)0.062 (2)−0.025 (2)−0.0139 (18)0.015 (2)
C80.0425 (15)0.0540 (18)0.066 (2)−0.0001 (14)0.0062 (14)0.0155 (16)
N20.0690 (19)0.082 (2)0.0641 (18)−0.0192 (17)−0.0205 (15)0.0253 (17)
C100.070 (2)0.084 (3)0.0393 (16)−0.002 (2)−0.0054 (15)−0.0015 (17)
C30.056 (2)0.086 (3)0.061 (2)−0.023 (2)0.0079 (16)0.0053 (19)
C40.059 (2)0.085 (3)0.065 (2)−0.015 (2)0.0053 (17)0.024 (2)
N40.093 (2)0.075 (2)0.0648 (19)0.0253 (19)−0.0001 (17)−0.0170 (16)
C120.074 (3)0.067 (2)0.102 (3)0.019 (2)0.016 (2)0.019 (2)

Geometric parameters (Å, °)

Co1—N32.034 (2)C9—H90.9300
Co1—N12.038 (3)C11—C101.365 (5)
Co1—Cl22.2303 (11)C11—H110.9300
Co1—Cl12.2635 (11)C6—H6A0.9600
N3—C71.330 (4)C6—H6B0.9600
N3—C111.363 (4)C6—H6C0.9600
N1—C11.350 (4)C8—C121.495 (6)
N1—C51.353 (4)N2—H2A0.8600
C5—C41.349 (5)N2—H2B0.8600
C5—H50.9300C10—H100.9300
C1—N21.352 (4)C3—C41.391 (5)
C1—C21.415 (5)C3—H30.9300
C7—N41.355 (4)C4—H40.9300
C7—C81.424 (4)N4—H4A0.8600
C2—C31.363 (5)N4—H4B0.8600
C2—C61.506 (5)C12—H12A0.9600
C9—C81.358 (5)C12—H12B0.9600
C9—C101.385 (6)C12—H12C0.9600
N3—Co1—N1106.66 (10)C2—C6—H6A109.5
N3—Co1—Cl2110.23 (8)C2—C6—H6B109.5
N1—Co1—Cl2111.26 (9)H6A—C6—H6B109.5
N3—Co1—Cl1109.94 (8)C2—C6—H6C109.5
N1—Co1—Cl1108.24 (8)H6A—C6—H6C109.5
Cl2—Co1—Cl1110.42 (5)H6B—C6—H6C109.5
C7—N3—C11119.0 (3)C9—C8—C7116.1 (3)
C7—N3—Co1123.1 (2)C9—C8—C12123.8 (3)
C11—N3—Co1117.8 (2)C7—C8—C12120.0 (3)
C1—N1—C5118.5 (3)C1—N2—H2A120.0
C1—N1—Co1123.4 (2)C1—N2—H2B120.0
C5—N1—Co1118.1 (2)H2A—N2—H2B120.0
C4—C5—N1123.2 (3)C11—C10—C9118.0 (3)
C4—C5—H5118.4C11—C10—H10121.0
N1—C5—H5118.4C9—C10—H10121.0
N1—C1—N2117.6 (3)C2—C3—C4121.1 (3)
N1—C1—C2121.4 (3)C2—C3—H3119.4
N2—C1—C2121.0 (3)C4—C3—H3119.4
N3—C7—N4117.0 (3)C5—C4—C3118.2 (3)
N3—C7—C8122.4 (3)C5—C4—H4120.9
N4—C7—C8120.6 (3)C3—C4—H4120.9
C3—C2—C1117.5 (3)C7—N4—H4A120.0
C3—C2—C6122.3 (3)C7—N4—H4B120.0
C1—C2—C6120.2 (3)H4A—N4—H4B120.0
C8—C9—C10122.4 (3)C8—C12—H12A109.5
C8—C9—H9118.8C8—C12—H12B109.5
C10—C9—H9118.8H12A—C12—H12B109.5
N3—C11—C10122.0 (3)C8—C12—H12C109.5
N3—C11—H11119.0H12A—C12—H12C109.5
C10—C11—H11119.0H12B—C12—H12C109.5
N1—Co1—N3—C769.9 (3)C11—N3—C7—C81.6 (5)
Cl2—Co1—N3—C7−169.2 (2)Co1—N3—C7—C8−178.2 (2)
Cl1—Co1—N3—C7−47.3 (3)N1—C1—C2—C3−0.4 (5)
N1—Co1—N3—C11−109.9 (2)N2—C1—C2—C3−179.4 (4)
Cl2—Co1—N3—C1111.0 (3)N1—C1—C2—C6179.5 (4)
Cl1—Co1—N3—C11133.0 (2)N2—C1—C2—C60.5 (6)
N3—Co1—N1—C1−172.4 (3)C7—N3—C11—C10−0.4 (5)
Cl2—Co1—N1—C167.4 (3)Co1—N3—C11—C10179.3 (3)
Cl1—Co1—N1—C1−54.1 (3)C10—C9—C8—C71.1 (5)
N3—Co1—N1—C56.1 (3)C10—C9—C8—C12179.1 (4)
Cl2—Co1—N1—C5−114.1 (2)N3—C7—C8—C9−1.9 (5)
Cl1—Co1—N1—C5124.4 (2)N4—C7—C8—C9179.8 (4)
C1—N1—C5—C41.6 (5)N3—C7—C8—C12−180.0 (3)
Co1—N1—C5—C4−176.9 (3)N4—C7—C8—C121.8 (5)
C5—N1—C1—N2178.2 (3)N3—C11—C10—C9−0.3 (6)
Co1—N1—C1—N2−3.3 (4)C8—C9—C10—C11−0.1 (6)
C5—N1—C1—C2−0.9 (5)C1—C2—C3—C41.1 (6)
Co1—N1—C1—C2177.6 (2)C6—C2—C3—C4−178.9 (4)
C11—N3—C7—N4179.9 (3)N1—C5—C4—C3−1.0 (6)
Co1—N3—C7—N40.1 (4)C2—C3—C4—C5−0.4 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···Cl1i0.862.723.427 (4)140
N4—H4A···Cl10.862.673.363 (4)138
N4—H4B···Cl2ii0.862.683.350 (4)136
C3—H3···Cl2iii0.932.813.701 (4)161

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x−1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2058).

References

  • Amani Komaei, S., Van Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (1999). Polyhedron, 18, 1991–1997.
  • Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. & Orpen, A. G. (1998). Chem. Commun. pp. 653–654.
  • Carnevale, D. J., Landee, C. P., Turnbull, M. M., Winn, M. & Xiao, F. (2010). J. Coord. Chem.63, 2223–2238.
  • Castillo, O., Luque, A., Lloret, F. & Román, P. (2001). Inorg. Chem. Commun.4, 350–353.
  • Chen, Z.-F., Liu, B., Liang, H., Hu, R.-X. & Zhou, Z.-Y. (2005). J. Coord. Chem.28, 561–565.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE Stoe & Cie, Darmstadt, Germany.
  • Ziegler, C. J., Silverman, A. P. & Lippard, S. J. (2000). J. Biol. Inorg. Chem.5, 774–783. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography