PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2473.
Published online 2010 September 4. doi:  10.1107/S1600536810034598
PMCID: PMC2983312

1-(4-{[(E)-4-Methyl­benzyl­idene]amino}­phen­yl)ethanone oxime

Abstract

In the title compound, C16H16N2O, the dihedral angle formed by the two benzene rings is 50.3 (1)°. In the crystal structure, mol­ecules are linked into an infinite one-dimensional supra­molecular structure by inter­molecular O—H(...)N hydrogen-bond inter­actions.

Related literature

For background to oxime-type compounds, see: Dong et al. (2009a [triangle],b [triangle]). For the synthesis, see: Rafiq et al. (2008 [triangle]); Dong et al. (2009c [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2473-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O
  • M r = 252.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2473-efi1.jpg
  • a = 5.7785 (6) Å
  • b = 14.581 (2) Å
  • c = 16.226 (2) Å
  • β = 94.285 (1)°
  • V = 1363.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.45 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.966, T max = 0.992
  • 6860 measured reflections
  • 2396 independent reflections
  • 1480 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.136
  • S = 0.95
  • 2396 reflections
  • 178 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1996 [triangle]); cell refinement: SAINT (Bruker, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034598/hg2705sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034598/hg2705Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Educational Department Foundation of Gansu Province (No. 20873) and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Oxime-type compounds are a great important ligands in modern coordination chemistry (Dong et al., 2009a; Dong et al., 2009b). Structures of oxime-type compounds derived from substituted benzaldehydes and 1-(4-aminophenyl)ethanone haven't been reported so far (Rafiq et al., 2008). Here we report the synthesis and crystal structure of (E)-4-[1-(Hydroxyimino)ethyl]-N-(4-methylbenzylidene)aniline (I), (Fig. 1).

The single-crystal structure of the title compound is built up by discrete C16H16N2O molecules, in which all bond lengths are in normal ranges. Within the molecule, the dihedral angle formed by the two benzene rings is 50.3 (1)°. In the crystal structure, the molecules are linked into infinite one-dimensional supramolecular structure by intermolecular O—H···N hydrogen bond interaction (Table 1 and Fig. 2).

Experimental

4-Aminophenylethanone oxime was prepared by 1-(4-aminophenyl)ethanone, hydroxylamine sulfate and sodium acetate (Rafiq et al., 2008; Dong et al., 2009c). To an ethanol solution (7 ml) of 4-aminophenylethanone oxime (151.0 mg, 1.00 mmol) was added dropwise an ethanol solution (8 ml) of 4-methylbenzaldehyde (121.6 mg, 1.00 mmol). The mixture solution was stirred at 330 K for 4 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 220.3 mg (Yield, 80.8%) of solid; m.p. 471–472 K. Pale-yellow block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of acetone of (I) at room temperature for about two weeks. Anal. Calcd. for C16H16N2O: C, 76.16; H, 6.39; N, 11.10; Found: C, 76.08; H, 6.45; N, 11.02.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atom was located in a difference Fourier map, and was refined with a distance restraint of O–H of 0.85±0.01 Å; its temperature factor was freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of C16H16N2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
Part of one-dimensional supramolecular structure is formed by O—H···N intermolecular interaction with H bonds drawn as dotted lines.

Crystal data

C16H16N2OF(000) = 536
Mr = 252.31Dx = 1.229 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1735 reflections
a = 5.7785 (6) Åθ = 2.5–25.3°
b = 14.581 (2) ŵ = 0.08 mm1
c = 16.226 (2) ÅT = 293 K
β = 94.285 (1)°Block, yellow
V = 1363.4 (2) Å30.45 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART diffractometer2396 independent reflections
Radiation source: fine-focus sealed tube1480 reflections with I > 2σ(I)
graphiteRint = 0.054
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.966, Tmax = 0.992k = −17→14
6860 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 0.95w = 1/[σ2(Fo2) + (0.0748P)2] where P = (Fo2 + 2Fc2)/3
2396 reflections(Δ/σ)max = 0.001
178 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7517 (3)0.26556 (12)0.05236 (8)0.0674 (5)
H10.861 (4)0.2274 (16)0.0445 (16)0.107 (11)*
N10.7670 (3)0.27459 (12)0.13916 (9)0.0529 (5)
N20.6350 (3)0.35564 (11)0.51824 (10)0.0512 (5)
C10.4032 (4)0.36066 (17)0.11219 (13)0.0710 (7)
H1A0.43130.35130.05520.106*
H1B0.39340.42520.12310.106*
H1C0.25990.33160.12360.106*
C20.5974 (4)0.32006 (13)0.16606 (11)0.0457 (5)
C30.6050 (3)0.32942 (12)0.25745 (11)0.0419 (5)
C40.4248 (4)0.36780 (14)0.29717 (12)0.0515 (5)
H40.29430.38900.26590.062*
C50.4343 (4)0.37537 (14)0.38259 (12)0.0531 (6)
H50.30910.40010.40780.064*
C60.6290 (4)0.34636 (13)0.43064 (11)0.0451 (5)
C70.8106 (4)0.30705 (14)0.39156 (11)0.0508 (5)
H70.94150.28610.42280.061*
C80.7974 (4)0.29896 (13)0.30692 (12)0.0506 (5)
H80.92060.27240.28190.061*
C90.8175 (4)0.39055 (13)0.55448 (12)0.0502 (5)
H90.93160.41040.52110.060*
C100.8639 (4)0.40224 (12)0.64333 (12)0.0470 (5)
C110.7108 (4)0.37421 (14)0.70052 (12)0.0554 (6)
H110.56940.34810.68230.066*
C120.7675 (4)0.38494 (14)0.78433 (12)0.0605 (6)
H120.66300.36580.82170.073*
C130.9766 (4)0.42353 (14)0.81375 (13)0.0555 (6)
C141.1268 (4)0.45209 (14)0.75684 (13)0.0624 (6)
H141.26770.47860.77520.075*
C151.0720 (4)0.44209 (14)0.67304 (13)0.0593 (6)
H151.17590.46230.63590.071*
C161.0399 (5)0.43398 (18)0.90515 (13)0.0821 (8)
H16A1.17100.39580.92100.123*
H16B0.91060.41600.93540.123*
H16C1.07830.49680.91730.123*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0689 (12)0.0968 (13)0.0364 (9)0.0112 (10)0.0044 (7)−0.0072 (8)
N10.0546 (12)0.0723 (12)0.0319 (9)0.0032 (9)0.0043 (8)−0.0032 (8)
N20.0532 (11)0.0621 (11)0.0388 (10)−0.0012 (9)0.0078 (8)−0.0002 (8)
C10.0772 (18)0.0874 (17)0.0466 (13)0.0216 (14)−0.0075 (12)−0.0056 (11)
C20.0468 (13)0.0492 (12)0.0411 (11)−0.0013 (10)0.0027 (9)0.0008 (9)
C30.0436 (12)0.0441 (11)0.0383 (10)−0.0009 (9)0.0034 (9)0.0033 (8)
C40.0461 (13)0.0631 (13)0.0449 (12)0.0082 (10)0.0015 (10)0.0029 (9)
C50.0472 (13)0.0670 (14)0.0462 (12)0.0069 (11)0.0110 (10)−0.0012 (9)
C60.0503 (13)0.0503 (11)0.0356 (11)−0.0028 (9)0.0078 (9)0.0025 (8)
C70.0469 (13)0.0632 (13)0.0422 (12)0.0074 (10)0.0016 (10)0.0018 (9)
C80.0481 (13)0.0610 (13)0.0430 (12)0.0088 (10)0.0065 (10)−0.0019 (9)
C90.0543 (14)0.0529 (12)0.0447 (12)−0.0008 (10)0.0122 (10)0.0012 (9)
C100.0556 (14)0.0451 (11)0.0406 (11)0.0013 (10)0.0050 (10)−0.0027 (8)
C110.0566 (14)0.0648 (13)0.0448 (12)−0.0067 (11)0.0048 (10)−0.0059 (10)
C120.0717 (16)0.0685 (15)0.0419 (12)−0.0052 (12)0.0078 (11)−0.0055 (10)
C130.0699 (16)0.0499 (12)0.0459 (12)0.0042 (11)−0.0017 (11)−0.0061 (9)
C140.0628 (16)0.0594 (13)0.0629 (15)−0.0095 (11)−0.0096 (12)−0.0083 (11)
C150.0609 (15)0.0594 (14)0.0582 (14)−0.0098 (11)0.0084 (12)−0.0013 (10)
C160.101 (2)0.0889 (18)0.0538 (15)0.0072 (15)−0.0125 (14)−0.0117 (12)

Geometric parameters (Å, °)

O1—N11.4107 (19)C7—H70.9300
O1—H10.860 (10)C8—H80.9300
N1—C21.286 (2)C9—C101.457 (3)
N2—C91.275 (2)C9—H90.9300
N2—C61.426 (2)C10—C151.389 (3)
C1—C21.492 (3)C10—C111.390 (3)
C1—H1A0.9600C11—C121.384 (3)
C1—H1B0.9600C11—H110.9300
C1—H1C0.9600C12—C131.385 (3)
C2—C31.487 (2)C12—H120.9300
C3—C41.383 (3)C13—C141.378 (3)
C3—C81.394 (3)C13—C161.509 (3)
C4—C51.387 (3)C14—C151.381 (3)
C4—H40.9300C14—H140.9300
C5—C61.386 (3)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C6—C71.389 (3)C16—H16B0.9600
C7—C81.375 (3)C16—H16C0.9600
N1—O1—H1102.5 (18)C3—C8—H8119.0
C2—N1—O1113.22 (16)N2—C9—C10126.0 (2)
C9—N2—C6117.10 (18)N2—C9—H9117.0
C2—C1—H1A109.5C10—C9—H9117.0
C2—C1—H1B109.5C15—C10—C11117.95 (19)
H1A—C1—H1B109.5C15—C10—C9118.88 (19)
C2—C1—H1C109.5C11—C10—C9123.16 (19)
H1A—C1—H1C109.5C12—C11—C10120.5 (2)
H1B—C1—H1C109.5C12—C11—H11119.8
N1—C2—C3114.78 (17)C10—C11—H11119.8
N1—C2—C1124.35 (18)C11—C12—C13121.4 (2)
C3—C2—C1120.87 (19)C11—C12—H12119.3
C4—C3—C8117.15 (17)C13—C12—H12119.3
C4—C3—C2122.31 (17)C14—C13—C12118.0 (2)
C8—C3—C2120.54 (18)C14—C13—C16120.6 (2)
C3—C4—C5121.51 (18)C12—C13—C16121.4 (2)
C3—C4—H4119.2C13—C14—C15121.2 (2)
C5—C4—H4119.2C13—C14—H14119.4
C6—C5—C4120.5 (2)C15—C14—H14119.4
C6—C5—H5119.8C14—C15—C10121.0 (2)
C4—C5—H5119.8C14—C15—H15119.5
C5—C6—C7118.56 (18)C10—C15—H15119.5
C5—C6—N2119.34 (18)C13—C16—H16A109.5
C7—C6—N2122.08 (18)C13—C16—H16B109.5
C8—C7—C6120.26 (19)H16A—C16—H16B109.5
C8—C7—H7119.9C13—C16—H16C109.5
C6—C7—H7119.9H16A—C16—H16C109.5
C7—C8—C3122.00 (19)H16B—C16—H16C109.5
C7—C8—H8119.0
O1—N1—C2—C3178.84 (15)C4—C3—C8—C7−0.6 (3)
O1—N1—C2—C1−0.6 (3)C2—C3—C8—C7179.64 (18)
N1—C2—C3—C4−173.15 (18)C6—N2—C9—C10−176.97 (17)
C1—C2—C3—C46.3 (3)N2—C9—C10—C15−179.7 (2)
N1—C2—C3—C86.6 (3)N2—C9—C10—C111.2 (3)
C1—C2—C3—C8−173.93 (19)C15—C10—C11—C12−0.9 (3)
C8—C3—C4—C5−0.3 (3)C9—C10—C11—C12178.23 (18)
C2—C3—C4—C5179.52 (18)C10—C11—C12—C130.0 (3)
C3—C4—C5—C61.6 (3)C11—C12—C13—C140.7 (3)
C4—C5—C6—C7−2.0 (3)C11—C12—C13—C16−179.1 (2)
C4—C5—C6—N2179.47 (18)C12—C13—C14—C15−0.4 (3)
C9—N2—C6—C5−132.4 (2)C16—C13—C14—C15179.4 (2)
C9—N2—C6—C749.1 (3)C13—C14—C15—C10−0.5 (3)
C5—C6—C7—C81.2 (3)C11—C10—C15—C141.1 (3)
N2—C6—C7—C8179.67 (18)C9—C10—C15—C14−178.03 (18)
C6—C7—C8—C30.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.86 (1)2.06 (1)2.919 (2)175 (3)

Symmetry codes: (i) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2705).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (1996). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, W.-K., Duan, J.-G., Guan, Y.-H., Shi, J.-Y. & Zhao, C.-Y. (2009c). Inorg. Chim. Acta, 362, 1129–1134.
  • Dong, W.-K., Lv, Z.-W., Sun, Y.-X., Xu, L., Wang, L. & Dong, X.-Y. (2009a). Chin. J. Inorg. Chem.25, 1627–1634.
  • Dong, W.-K., Sun, Y.-X., Zhang, Y.-P., Li, L., He, X.-N. & Tang, X.-L. (2009b). Inorg. Chim. Acta, 362, 117–124.
  • Rafiq, M., Hanif, M., Qadeer, G., Vuoti, S. & Autio, J. (2008). Acta Cryst. E64, o2173. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography