PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2616–o2617.
Published online 2010 September 25. doi:  10.1107/S160053681003730X
PMCID: PMC2983310

2-Amino-7-oxo-4,5,6,7-tetra­hydro-1-benzothio­phene-3-carbonitrile

Abstract

In the title compound, C9H8N2OS, the benzothio­phene ring is substituted with amino, oxo and carbonitrile groups. The thio­phene ring is essentially planar (r.m.s. deviation = 0.0003 Å), while the cyclo­hexene ring is in a half-chair conformation. In the crystal, N—H(...)O hydrogen bonds generate chains of mol­ecules in a zigzag pattern along the b axis. Pairs of N—H(...)N hydrogen bonds form centrosymmetric head-to-head dimers about inversion centres, corresponding to an R 2 2(12) graph-set motif. In addition, rather weak N—H(...)S inter­actions are also present in the structure and the supra­molecular assembly is further consolidated by π–π stacking inter­actions between the benzothio­phene rings, disposed at a distance of 3.742 (3) Å.

Related literature

For the preparation of the title compound, see: Shetty et al. (2009 [triangle]). For general background, see: Jordan (2003 [triangle]); Russell & Press (1996 [triangle]); Mery et al. (2002 [triangle]). For related structures, see: Akkurt et al. (2008 [triangle]); Harrison et al. (2006 [triangle]); Vasu et al. (2004 [triangle]). For Cremer–Pople puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond graph-set nomenclature, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2616-scheme1.jpg

Experimental

Crystal data

  • C9H8N2OS
  • M r = 192.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2616-efi1.jpg
  • a = 7.2986 (3) Å
  • b = 8.7555 (3) Å
  • c = 14.7307 (6) Å
  • β = 94.151 (1)°
  • V = 938.87 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 296 K
  • 0.20 × 0.18 × 0.18 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.942, T max = 0.947
  • 6202 measured reflections
  • 2058 independent reflections
  • 1671 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.126
  • S = 1.02
  • 2058 reflections
  • 118 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]) and PARST (Nardelli, 1983 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003730X/pv2326sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003730X/pv2326Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NSB is grateful to the University Grants Commission (UGC), India, for financial assistance, and the Department of Science and Technology (DST), India, for the data-collection facility under the IRHPA–DST programme.

supplementary crystallographic information

Comment

Benzothiophenes are important biologically active molecules. One of the most important drugs based on the benzothiophene system is Raloxifene, used for the prevention and treatment of osteoporosis in postmenopausal women (Jordan, 2003). Benzothiophenes are also luminescent components used in organic materials (Russell & Press, 1996). In addition, they are regarded as important units in liquid crystal research (Mery et al., 2002). In this article, we report the structure of the title compound which has been synthesized in our laboratory.

In the title compound (Fig. 1), the thiophene ring is essentially planar while the cyclohexene ring is in a half-chair conformation; the atoms C5 and C6 deviate from the mean plane C1/C7/C4/C8 by 0.341 (3)and -0.233 (2) Å, respectively. The puckering parameters (Cremer & Pople, 1975) for the cyclohexene ring are: Q(2) = 0.3175 (3) Å, [var phi](2) = -17.96 (8)° and θ = 129.68 (7)°. In several benzothiophene derivatives the cyclohexyl ring adopts half-chair conformation, e.g., (Akkurt et al., 2008; Harrison et al., 2006; Vasu et al., 2004).

The N—H···O hydrogen bonds generate chains of molecules in a zigzag pattern along the b-axis. While the N—H···N hydrogen bonds form centrosymmetric, head-to-head dimers about inversion centers corresponding to graph set R22(12) motif. In addition, rather weak N—H···S interactions are also present in the structure and the supramolecular assembly is further consolidated by π–π-stacking interactions between the benzothiophene rings; C—C disposed at a distance of 3.742 (3) Å.

The intermolecular interactions of the type N—H···O, N—H···N and N—H···S stabilize the crystal structure (Table 1). The N1—H1A···O1 hydrogen bonds generate chains of molecules in a zigzag pattern along the b-axis (Fig. 2). The N1—H1B···N2 hydrogen bonds on the other hand, form centrosymmetric, head-to-head dimers about inversion centers corresponding to graph set R22(12) motif (Bernstein et al., 1995) (Fig. 2). In addition, rather weak N1—H1B···S1 interactions are also present in the structure and the supramolecular assembly is further consolidated by π–π-stacking interactions between the benzothiophene rings; C—C disposed at a distance of 3.742 (3) Å.

Experimental

The title compound was synthesized by following the procedure reported earlier (Shetty et al., 2009).

Refinement

The H atoms were placed at calculated positions in the riding model approximation with N—H = 0.86 and C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(N/C).

Figures

Fig. 1.
ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
Fig. 2.
A unit cell packing of the title compound showing intermolecular hydrogen bonds with dotted lines. H atoms not involved in hydrogen bonding have been excluded.

Crystal data

C9H8N2OSF(000) = 400
Mr = 192.24Dx = 1.360 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2058 reflections
a = 7.2986 (3) Åθ = 2.7–27.0°
b = 8.7555 (3) ŵ = 0.30 mm1
c = 14.7307 (6) ÅT = 296 K
β = 94.151 (1)°Block, yellow
V = 938.87 (6) Å30.20 × 0.18 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer2058 independent reflections
Radiation source: Enhance (Mo) X-ray Source1671 reflections with I > 2σ(I)
graphiteRint = 0.020
ω scansθmax = 27.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −9→5
Tmin = 0.942, Tmax = 0.947k = −11→10
6202 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0675P)2 + 0.447P] where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Experimental. The compound was synthesized by following the procedure given in Shetty et al., (2009)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.0414 (3)1.0457 (2)0.33340 (13)0.0378 (4)
C20.1087 (3)0.7962 (2)0.37011 (13)0.0386 (4)
C3−0.0580 (3)0.8166 (2)0.41027 (13)0.0391 (4)
C4−0.3211 (3)1.0145 (3)0.42024 (14)0.0430 (5)
H4A−0.30361.04830.48300.052*
H4B−0.40870.93100.41760.052*
C5−0.3979 (3)1.1460 (3)0.3610 (2)0.0664 (7)
H5A−0.45331.10440.30450.080*
H5B−0.49421.19600.39210.080*
C6−0.2579 (3)1.2634 (3)0.33910 (19)0.0588 (6)
H6A−0.21791.31810.39430.071*
H6B−0.31471.33660.29640.071*
C7−0.0921 (3)1.1943 (2)0.29875 (14)0.0444 (5)
C8−0.1417 (3)0.9590 (2)0.38916 (13)0.0371 (4)
C9−0.1327 (3)0.7027 (3)0.46592 (16)0.0494 (5)
N10.2242 (3)0.6773 (2)0.37766 (13)0.0539 (5)
H1A0.19940.60020.41080.065*
H1B0.32330.67810.34940.065*
N2−0.1907 (3)0.6114 (3)0.51076 (18)0.0781 (7)
O1−0.0078 (2)1.2613 (2)0.24138 (12)0.0622 (5)
S10.15957 (6)0.95344 (6)0.30522 (3)0.04133 (19)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0312 (9)0.0402 (10)0.0431 (10)−0.0005 (8)0.0107 (8)0.0018 (8)
C20.0401 (10)0.0374 (10)0.0395 (10)−0.0024 (8)0.0107 (8)0.0004 (8)
C30.0396 (10)0.0402 (10)0.0391 (10)−0.0035 (8)0.0126 (8)0.0025 (8)
C40.0363 (10)0.0507 (12)0.0437 (10)−0.0021 (9)0.0147 (8)−0.0008 (9)
C50.0440 (12)0.0647 (16)0.0931 (19)0.0074 (12)0.0246 (12)0.0112 (14)
C60.0500 (13)0.0545 (13)0.0741 (16)0.0128 (11)0.0200 (12)0.0146 (12)
C70.0387 (10)0.0458 (12)0.0499 (11)0.0007 (9)0.0107 (9)0.0069 (9)
C80.0340 (9)0.0421 (11)0.0359 (9)−0.0037 (8)0.0080 (7)−0.0024 (8)
C90.0490 (12)0.0433 (12)0.0585 (13)0.0020 (9)0.0211 (10)0.0079 (10)
N10.0563 (11)0.0431 (10)0.0659 (12)0.0097 (8)0.0285 (9)0.0104 (9)
N20.0778 (16)0.0632 (14)0.0985 (18)0.0055 (13)0.0416 (14)0.0298 (14)
O10.0572 (10)0.0555 (10)0.0773 (11)0.0072 (8)0.0295 (8)0.0249 (8)
S10.0344 (3)0.0419 (3)0.0496 (3)−0.0004 (2)0.0160 (2)0.0072 (2)

Geometric parameters (Å, °)

C1—C81.368 (3)C4—H4B0.9700
C1—C71.437 (3)C5—C61.501 (3)
C1—S11.7504 (19)C5—H5A0.9700
C2—N11.339 (3)C5—H5B0.9700
C2—C31.402 (3)C6—C71.512 (3)
C2—S11.732 (2)C6—H6A0.9700
C3—C81.414 (3)C6—H6B0.9700
C3—C91.424 (3)C7—O11.230 (2)
C4—C81.499 (3)C9—N21.138 (3)
C4—C51.526 (3)N1—H1A0.8600
C4—H4A0.9700N1—H1B0.8600
C8—C1—C7125.45 (18)C4—C5—H5B108.7
C8—C1—S1112.37 (15)H5A—C5—H5B107.6
C7—C1—S1122.18 (15)C5—C6—C7112.8 (2)
N1—C2—C3128.63 (18)C5—C6—H6A109.0
N1—C2—S1120.34 (15)C7—C6—H6A109.0
C3—C2—S1111.02 (15)C5—C6—H6B109.0
C2—C3—C8113.20 (17)C7—C6—H6B109.0
C2—C3—C9122.26 (19)H6A—C6—H6B107.8
C8—C3—C9124.54 (18)O1—C7—C1123.17 (19)
C8—C4—C5111.26 (17)O1—C7—C6122.3 (2)
C8—C4—H4A109.4C1—C7—C6114.57 (18)
C5—C4—H4A109.4C1—C8—C3112.31 (17)
C8—C4—H4B109.4C1—C8—C4121.39 (19)
C5—C4—H4B109.4C3—C8—C4126.28 (17)
H4A—C4—H4B108.0N2—C9—C3179.3 (3)
C6—C5—C4114.3 (2)C2—N1—H1A120.0
C6—C5—H5A108.7C2—N1—H1B120.0
C4—C5—H5A108.7H1A—N1—H1B120.0
C6—C5—H5B108.7C2—S1—C191.10 (9)
N1—C2—C3—C8178.3 (2)C7—C1—C8—C40.0 (3)
S1—C2—C3—C8−0.7 (2)S1—C1—C8—C4−178.70 (14)
N1—C2—C3—C9−2.1 (4)C2—C3—C8—C10.4 (3)
S1—C2—C3—C9178.95 (17)C9—C3—C8—C1−179.2 (2)
C8—C4—C5—C6−43.4 (3)C2—C3—C8—C4179.08 (18)
C4—C5—C6—C752.8 (3)C9—C3—C8—C4−0.5 (3)
C8—C1—C7—O1−172.2 (2)C5—C4—C8—C117.3 (3)
S1—C1—C7—O16.4 (3)C5—C4—C8—C3−161.3 (2)
C8—C1—C7—C68.3 (3)C2—C3—C9—N238 (24)
S1—C1—C7—C6−173.14 (17)C8—C3—C9—N2−142 (24)
C5—C6—C7—O1146.5 (2)N1—C2—S1—C1−178.50 (18)
C5—C6—C7—C1−33.9 (3)C3—C2—S1—C10.57 (16)
C7—C1—C8—C3178.76 (19)C8—C1—S1—C2−0.37 (17)
S1—C1—C8—C30.1 (2)C7—C1—S1—C2−179.11 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.193.038 (3)169
N1—H1B···O1ii0.862.102.903 (3)156
N1—H1B···S1ii0.863.023.482 (2)116

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2326).

References

  • Akkurt, M., Karaca, S., Asiri, A. M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o869. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker. (1998). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Vijaya Raj, K. K. & Narayana, B. (2006). Acta Cryst. E62, o3732–o3734.
  • Jordan, V. C. (2003). J. Med. Chem.46, 1081–1111. [PubMed]
  • Mery, S., Haristory, D., Nicoud, J.-F., Guillon, D., Diele, S., Monobe, H. & Shimizu, Y. (2002). J. Mater. Chem.12, 37–41.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Russell, R. K. & Press, J. B. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 2, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven. pp. 679–729. Oxford: Pergamon Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shetty, N. S., Lamani, R. S. & Khazi, I. A. M. (2009). J. Chem. Sci.121, 301–307.
  • Vasu, Nirmala, K. A., Chopra, D., Mohan, S. & Saravanan, J. (2004). Acta Cryst. E60, o1654–o1655. [PubMed]
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography