PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2552.
Published online 2010 September 11. doi:  10.1107/S1600536810035117
PMCID: PMC2983307

(2E)-1-(3-Bromo­phen­yl)-3-(6-meth­oxy-2-naphth­yl)prop-2-en-1-one

Abstract

In the title compound, C20H15BrO2, the prop-2-en-1-one fragment is substanti­ally twisted [C—C—C—O = 23.0 (11)°]. The dihedral angle between the benzene and naphthalene rings is 44.28 (13)°. The only possible directional inter­actions in the crystal are weak C—H(...)π contacts, which generate (001) sheets.

Related literature

For related structures, see: Yathirajan et al. (2007a [triangle],b [triangle]); Jasinski et al. (2009 [triangle]). For background to the non-linear optical properties of chalcones, see: Sarojini et al. (2006 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2552-scheme1.jpg

Experimental

Crystal data

  • C20H15BrO2
  • M r = 367.23
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2552-efi2.jpg
  • a = 14.0955 (14) Å
  • b = 6.1295 (6) Å
  • c = 36.119 (4) Å
  • V = 3120.6 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.64 mm−1
  • T = 120 K
  • 0.11 × 0.09 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.760, T max = 0.925
  • 28579 measured reflections
  • 3545 independent reflections
  • 1719 reflections with I > 2σ(I)
  • R int = 0.228

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.163
  • S = 1.05
  • 3545 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]), SCALEPACK and SORTAV (Blessing, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035117/tk2699sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035117/tk2699Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

ANM thanks the University of Mysore for providing research facilities. HSY thanks the University of Mysore for sanctioning sabbatical leave.

supplementary crystallographic information

Comment

The title compound, (I), (Fig. 1), was prepared as part of our ongoing studies (Yathirajan et al., 2007a,b; Jasinski et al., 2009) of substituted phenyl/naphthyl chalcone derivatives as possible candidates for non-linear optical materials (Sarojini et al., 2006). However, (I) crystallizes in a centrosymmetric space group, thus its second-harmonic generation (SHG) response must be zero.

The prop-2-en-1-one (enone) fragment in (I) is substantially twisted, as indicated by the C11—C12—C13—O2 torsion angle of 23.0 (11)°. The dihedral angle between the aromatic ring systems is 44.28 (13)°. Equivalent data for related structures are as follows: (2E)-1-(2,4-dichlorophenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (Yathirajan et al., 2007a): -10.9 (2) and 44.94 (4)°; (2E)-3-(6-methoxy-2-naphthyl)-1-phenylprop-2-en-1-one (Yathirajan et al., 2007b): -15.9 (4) and 14.9 (8)°; (2E)-1-(2-hydroxyphenyl)-3-(6-methoxy-2-naphthyl)prop-2-en-1-one (Jasinski et al., 2009): -14.9 (2) and 31.7 (3)°. Otherwise, the bond lengths for (I) fall within their expected ranges (Allen et al., 1987).

In the crystal of (I), the only possible directional interactions between molecules are weak C—H···π contacts in which the C3–C8 ring of the naphthyl moiety provides both the C—H donor groups and the aromatic acceptor surface (Table 1, Fig. 2). Together, these generate (001) sheets.

Experimental

To a thoroughly stirred solution of 6-methoxy-2-naphthaldehyde (1.86 g, 0.01 mol) and 3-bromoacetophenone (1.99 g, 0.01 mol) in 25 ml methanol, 5 ml of 40% KOH solution was added. The reaction mixture was stirred overnight and the solid separated was collected by filtration. The product obtained was recrystallized from methanol. Colourless slabs of (I) were grown by the slow evaporation of the ethylacetate solution (m.p. 427–429 K).

Refinement

The crystal studied was a weak scatterer, which may correlate with the high Rint value. The hydrogen atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating rigid-group model was applied to the methyl group.

Figures

Fig. 1.
View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
Fig. 2.
Partial packing diagram for (I) showing the possible weak C—H···π contacts. All H atoms except H4 and H7 omitted for clarity. Symmetry codes: (i) 1/2–x, y–1/2, z; (ii) 1–x, 1/2 + y, 1/2–z. ...

Crystal data

C20H15BrO2F(000) = 1488
Mr = 367.23Dx = 1.563 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 55128 reflections
a = 14.0955 (14) Åθ = 2.9–27.5°
b = 6.1295 (6) ŵ = 2.64 mm1
c = 36.119 (4) ÅT = 120 K
V = 3120.6 (5) Å3Slab, colourless
Z = 80.11 × 0.09 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer3545 independent reflections
Radiation source: fine-focus sealed tube1719 reflections with I > 2σ(I)
graphiteRint = 0.228
ω and [var phi] scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −18→18
Tmin = 0.760, Tmax = 0.925k = −7→7
28579 measured reflectionsl = −46→46

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0343P)2 + 12.2862P] where P = (Fo2 + 2Fc2)/3
3545 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3881 (4)0.3963 (12)0.14070 (18)0.0269 (16)
C20.3536 (5)0.2944 (11)0.17160 (18)0.0260 (16)
H20.32240.15760.16950.031*
C30.3647 (4)0.3940 (11)0.20683 (18)0.0244 (15)
C40.3332 (4)0.2939 (11)0.23966 (18)0.0247 (16)
H40.30570.15260.23840.030*
C50.3411 (4)0.3933 (11)0.27329 (17)0.0257 (15)
H50.31920.32020.29490.031*
C60.3820 (4)0.6074 (12)0.27654 (18)0.0226 (15)
C70.4144 (4)0.7064 (11)0.24441 (19)0.0266 (17)
H70.44180.84770.24600.032*
C80.4083 (4)0.6051 (12)0.20954 (18)0.0249 (16)
C90.4425 (5)0.7045 (12)0.1768 (2)0.0316 (18)
H90.47240.84320.17820.038*
C100.4332 (4)0.6034 (12)0.14329 (19)0.0290 (16)
H100.45690.67180.12160.035*
C110.3820 (4)0.7262 (12)0.31156 (18)0.0262 (18)
H110.40350.87300.31070.031*
C120.3550 (5)0.6518 (11)0.34459 (18)0.0290 (17)
H120.33560.50390.34680.035*
C130.3544 (5)0.7926 (12)0.3780 (2)0.0305 (17)
C140.3642 (4)0.6878 (12)0.4150 (2)0.0276 (17)
C150.3486 (5)0.8158 (12)0.44671 (19)0.0312 (17)
H150.32740.96220.44420.037*
C160.3638 (5)0.7308 (12)0.4810 (2)0.0313 (17)
C170.3927 (5)0.5156 (12)0.48559 (19)0.0290 (18)
H170.40140.45550.50960.035*
C180.4085 (5)0.3918 (13)0.4543 (2)0.0363 (18)
H180.43050.24610.45710.044*
C190.3934 (5)0.4728 (12)0.4191 (2)0.035 (2)
H190.40290.38270.39810.042*
C200.3351 (5)0.1184 (12)0.10028 (19)0.0400 (19)
H20A0.33180.08220.07390.060*
H20B0.27070.12980.11030.060*
H20C0.36970.00360.11350.060*
O10.3827 (3)0.3202 (8)0.10487 (13)0.0351 (13)
O20.3495 (4)0.9934 (9)0.37483 (13)0.0361 (12)
Br10.34948 (6)0.90763 (13)0.52413 (2)0.0403 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.024 (4)0.033 (4)0.024 (4)0.007 (4)−0.003 (3)−0.002 (4)
C20.027 (4)0.023 (4)0.027 (4)−0.005 (4)−0.011 (4)−0.001 (3)
C30.022 (4)0.022 (4)0.029 (4)0.002 (4)0.000 (3)−0.003 (4)
C40.021 (4)0.019 (4)0.034 (4)0.002 (3)0.004 (3)0.006 (3)
C50.022 (3)0.031 (4)0.024 (4)−0.002 (4)0.003 (3)0.008 (4)
C60.014 (3)0.023 (4)0.030 (4)−0.001 (3)−0.002 (3)−0.001 (4)
C70.013 (3)0.029 (4)0.038 (5)−0.001 (3)0.002 (3)0.004 (4)
C80.018 (3)0.031 (4)0.026 (4)0.005 (4)−0.001 (3)0.000 (4)
C90.027 (4)0.034 (4)0.034 (5)0.002 (4)0.003 (4)0.003 (4)
C100.022 (4)0.032 (4)0.033 (4)0.000 (4)0.003 (3)0.009 (4)
C110.019 (4)0.028 (4)0.031 (4)0.001 (3)0.000 (3)−0.009 (4)
C120.024 (4)0.031 (4)0.032 (4)−0.006 (4)0.000 (4)−0.009 (3)
C130.021 (4)0.032 (5)0.038 (4)−0.001 (4)0.011 (4)−0.001 (4)
C140.016 (4)0.033 (4)0.034 (4)−0.002 (3)0.002 (3)−0.004 (4)
C150.025 (4)0.030 (4)0.039 (4)−0.004 (4)0.002 (4)−0.007 (4)
C160.028 (4)0.034 (4)0.032 (4)0.003 (3)0.003 (4)−0.004 (4)
C170.027 (4)0.034 (4)0.026 (4)−0.003 (3)−0.001 (3)0.002 (3)
C180.030 (4)0.038 (5)0.041 (5)0.000 (4)−0.005 (4)−0.003 (5)
C190.023 (4)0.040 (5)0.042 (5)−0.001 (3)−0.011 (4)−0.007 (4)
C200.059 (5)0.033 (4)0.029 (4)−0.007 (4)−0.005 (4)−0.004 (4)
O10.045 (3)0.035 (3)0.026 (3)−0.002 (2)0.001 (2)−0.001 (3)
O20.034 (3)0.044 (3)0.031 (3)0.006 (3)0.001 (3)−0.002 (3)
Br10.0471 (4)0.0440 (5)0.0298 (4)0.0048 (5)0.0016 (4)−0.0062 (4)

Geometric parameters (Å, °)

C1—C21.369 (9)C11—H110.9500
C1—O11.378 (8)C12—C131.483 (9)
C1—C101.422 (9)C12—H120.9500
C2—C31.420 (9)C13—O21.238 (8)
C2—H20.9500C13—C141.489 (10)
C3—C41.407 (9)C14—C191.389 (9)
C3—C81.436 (9)C14—C151.406 (9)
C4—C51.364 (9)C15—C161.361 (9)
C4—H40.9500C15—H150.9500
C5—C61.439 (9)C16—C171.391 (10)
C5—H50.9500C16—Br11.909 (7)
C6—C71.387 (9)C17—C181.379 (9)
C6—C111.459 (9)C17—H170.9500
C7—C81.407 (9)C18—C191.380 (10)
C7—H70.9500C18—H180.9500
C8—C91.414 (9)C19—H190.9500
C9—C101.366 (9)C20—O11.418 (8)
C9—H90.9500C20—H20A0.9800
C10—H100.9500C20—H20B0.9800
C11—C121.333 (9)C20—H20C0.9800
C2—C1—O1126.3 (6)C6—C11—H11116.4
C2—C1—C10120.8 (6)C11—C12—C13122.0 (7)
O1—C1—C10112.9 (6)C11—C12—H12119.0
C1—C2—C3119.7 (6)C13—C12—H12119.0
C1—C2—H2120.1O2—C13—C12120.3 (7)
C3—C2—H2120.1O2—C13—C14121.1 (7)
C4—C3—C2122.2 (6)C12—C13—C14118.6 (6)
C4—C3—C8118.1 (6)C19—C14—C15119.2 (7)
C2—C3—C8119.7 (6)C19—C14—C13122.2 (7)
C5—C4—C3122.0 (6)C15—C14—C13118.5 (6)
C5—C4—H4119.0C16—C15—C14120.2 (7)
C3—C4—H4119.0C16—C15—H15119.9
C4—C5—C6120.9 (6)C14—C15—H15119.9
C4—C5—H5119.6C15—C16—C17121.2 (7)
C6—C5—H5119.6C15—C16—Br1120.6 (5)
C7—C6—C5117.6 (6)C17—C16—Br1118.2 (5)
C7—C6—C11120.5 (6)C18—C17—C16118.1 (7)
C5—C6—C11121.7 (6)C18—C17—H17120.9
C6—C7—C8122.4 (6)C16—C17—H17120.9
C6—C7—H7118.8C17—C18—C19122.1 (7)
C8—C7—H7118.8C17—C18—H18119.0
C7—C8—C9122.5 (7)C19—C18—H18119.0
C7—C8—C3119.0 (6)C18—C19—C14119.1 (8)
C9—C8—C3118.5 (6)C18—C19—H19120.4
C10—C9—C8120.8 (7)C14—C19—H19120.4
C10—C9—H9119.6O1—C20—H20A109.5
C8—C9—H9119.6O1—C20—H20B109.5
C9—C10—C1120.4 (7)H20A—C20—H20B109.5
C9—C10—H10119.8O1—C20—H20C109.5
C1—C10—H10119.8H20A—C20—H20C109.5
C12—C11—C6127.2 (7)H20B—C20—H20C109.5
C12—C11—H11116.4C1—O1—C20115.6 (6)
O1—C1—C2—C3−180.0 (6)C7—C6—C11—C12−178.5 (7)
C10—C1—C2—C3−1.4 (9)C5—C6—C11—C127.2 (10)
C1—C2—C3—C4−178.0 (6)C6—C11—C12—C13−177.3 (6)
C1—C2—C3—C82.7 (9)C11—C12—C13—O223.0 (11)
C2—C3—C4—C5−177.7 (6)C11—C12—C13—C14−154.4 (6)
C8—C3—C4—C51.6 (9)O2—C13—C14—C19−163.5 (7)
C3—C4—C5—C60.2 (10)C12—C13—C14—C1913.8 (10)
C4—C5—C6—C7−1.1 (9)O2—C13—C14—C1512.6 (10)
C4—C5—C6—C11173.4 (6)C12—C13—C14—C15−170.1 (6)
C5—C6—C7—C80.1 (9)C19—C14—C15—C161.2 (10)
C11—C6—C7—C8−174.5 (6)C13—C14—C15—C16−175.0 (6)
C6—C7—C8—C9−179.1 (6)C14—C15—C16—C17−1.5 (10)
C6—C7—C8—C31.7 (10)C14—C15—C16—Br1176.6 (5)
C4—C3—C8—C7−2.5 (9)C15—C16—C17—C181.9 (10)
C2—C3—C8—C7176.8 (6)Br1—C16—C17—C18−176.2 (5)
C4—C3—C8—C9178.3 (6)C16—C17—C18—C19−2.2 (10)
C2—C3—C8—C9−2.4 (9)C17—C18—C19—C142.0 (10)
C7—C8—C9—C10−178.3 (6)C15—C14—C19—C18−1.5 (10)
C3—C8—C9—C100.9 (10)C13—C14—C19—C18174.6 (6)
C8—C9—C10—C10.4 (10)C2—C1—O1—C201.2 (9)
C2—C1—C10—C9−0.2 (10)C10—C1—O1—C20−177.5 (6)
O1—C1—C10—C9178.6 (6)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg2i0.952.703.432 (6)134
C7—H7···Cg2ii0.952.803.520 (6)134

Symmetry codes: (i) −x+1/2, y−3/2, z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2699).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2009). J. Chem. Crystallogr.39, 157–162.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yathirajan, H. S., Mayekar, A. N., Narayana, B., Sarojini, B. K. & Bolte, M. (2007a). Acta Cryst. E63, o540–o541.
  • Yathirajan, H. S., Mayekar, A. N., Sarojini, B. K., Narayana, B. & Bolte, M. (2007b). Acta Cryst. E63, o1012–o1013.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography