PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2515.
Published online 2010 September 8. doi:  10.1107/S1600536810035191
PMCID: PMC2983297

1,8-Diiodo­anthracene

Abstract

The mol­ecule of the title compound, C14H8I2, an inter­mediate in the synthesis of organic materials, is nearly planar, the maximum deviation from the mean plane being 0.032 (1) Å for the C atoms and 0.082 (2) Å for the I atoms. In the crystal structure, a sandwich–herringbone arrangement of mol­ecules is observed, whereas a columnar π-stacking arrangement has been reported for the chlorinated congener 1,8-dichloro­anthracene. Similar effects of halogen substituents on the modulation of packing arrangements are reported for halogenated aromatic compounds such as tetra­cenes and chrycenes.

Related literature

For the synthesis, see: Lovell & Joule (1997 [triangle]); Goichi et al. (2005 [triangle]). For the crystal structure of related 1,8-dichloro­anthracenes, see: Desvergne et al., (1978 [triangle]); Benites et al., (1996 [triangle]). For similar halogen effects on the arrangement of aromatic mol­ecules, see: Moon et al. (2004 [triangle]); Isobe et al. (2009 [triangle]). For an example of synthetic utility of the title compound in organic materials, see: Nakanishi et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2515-scheme1.jpg

Experimental

Crystal data

  • C14H8I2
  • M r = 430.00
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2515-efi1.jpg
  • a = 10.1167 (11) Å
  • b = 10.8680 (11) Å
  • c = 11.3930 (12) Å
  • β = 101.829 (1)°
  • V = 1226.0 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.10 mm−1
  • T = 100 K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.429, T max = 0.630
  • 13646 measured reflections
  • 2904 independent reflections
  • 2783 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.014
  • wR(F 2) = 0.038
  • S = 1.09
  • 2904 reflections
  • 145 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97, Yadokari-XG (Kabuto et al., 2009 [triangle]) and publCIF (Westrip, 2010 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035191/jh2197sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035191/jh2197Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was partly supported by KAKENHI (21685005, 20108015 to HI and 22550094 to WN) and the Global COE Program (Mol­ecular Complex Chemistry). We thank Professor T. Iwamoto for generous time for X-ray analysis. SH thanks the Global COE program for a predoctoral fellowship.

supplementary crystallographic information

Comment

Acenes are important compounds for the development of organic electronics, and the halogenated derivatives are of topical interest due to the unique packing arrangements (Moon et al., 2004; Isobe et al., 2009). The crystal structure of 1,8-dihaloanthracenes has been reported only for a chlorinated compound (Desvergne et al., 1978; Benites et al., 1996), and a columnar π-stacking arrangement of the molecules in the crystal has been revealed. We obtained a single-crystal of 1,8-diiodoanthracene and found a sandwich-herringbone arrangement of the molecules in the crystal. The molecular structure is shown in Fig. 1, and the packing structure is shown in Fig. 2. The distance of π-stacking between the sandwiched dimer is 3.401 Å. The CH-π and halogen-π distances for the herringbone contacts are 2.908 (7) and 3.446 (3) Å, respectively.

Experimental

The title compound was synthesized from 4,5-diiodo-9-anthrone by a procedure similar to those reported in literatures (Lovell et al., 1997; Goichi et al., 2005). A single-crystal suitable for X-ray crystallographic analysis was obtained by recrystallization from a mixture of hexanes and dichloromethane (5:1).

Refinement

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.9 Å (aromatic) and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
The sandwich-herringbone packing of the title compound, viewed along the a axis.

Crystal data

C14H8I2F(000) = 792
Mr = 430.00Dx = 2.330 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5335 reflections
a = 10.1167 (11) Åθ = 2.6–27.8°
b = 10.8680 (11) ŵ = 5.10 mm1
c = 11.3930 (12) ÅT = 100 K
β = 101.829 (1)°Cubic, green
V = 1226.0 (2) Å30.20 × 0.20 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer2904 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode2783 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirrorRint = 0.016
Detector resolution: 8.333 pixels mm-1θmax = 27.9°, θmin = 2.1°
[var phi] and ω scansh = −13→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −14→14
Tmin = 0.429, Tmax = 0.630l = −14→14
13646 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0197P)2 + 0.8912P] where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max = 0.005
145 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.63 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.760513 (11)1.050372 (9)0.779962 (10)0.01704 (4)
I20.242248 (11)1.052601 (9)0.591438 (9)0.01734 (4)
C80.21957 (18)0.93209 (15)0.73076 (15)0.0147 (3)
C90.46782 (17)0.93129 (14)0.81821 (14)0.0138 (3)
H70.48390.98270.75520.017*
C130.33549 (17)0.89456 (14)0.81903 (14)0.0136 (3)
C70.09231 (17)0.89426 (16)0.73555 (15)0.0178 (3)
H60.01790.91950.67520.021*
C50.17608 (18)0.77913 (15)0.91729 (15)0.0174 (3)
H40.16000.72780.98040.021*
C60.07051 (17)0.81682 (16)0.83110 (15)0.0188 (3)
H5−0.01850.79150.83440.023*
C140.31114 (17)0.81568 (14)0.91435 (14)0.0144 (3)
C110.57708 (17)0.89446 (14)0.90752 (14)0.0137 (3)
C120.55249 (17)0.81532 (14)1.00247 (14)0.0146 (3)
C100.42066 (17)0.77828 (15)1.00274 (14)0.0158 (3)
H80.40480.72581.06510.019*
C40.66292 (18)0.77839 (15)1.09544 (15)0.0173 (3)
H30.64700.72621.15800.021*
C10.71420 (18)0.93258 (15)0.91241 (15)0.0143 (3)
C20.81750 (17)0.89582 (15)1.00237 (15)0.0171 (3)
H10.90710.92251.00320.020*
C30.79074 (18)0.81744 (16)1.09492 (15)0.0186 (3)
H20.86310.79201.15720.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.01809 (7)0.01676 (6)0.01754 (7)−0.00121 (4)0.00662 (5)0.00173 (4)
I20.02054 (7)0.01650 (7)0.01391 (6)0.00081 (4)0.00105 (5)0.00270 (3)
C80.0183 (8)0.0134 (7)0.0128 (7)0.0009 (6)0.0040 (6)−0.0012 (5)
C90.0178 (7)0.0117 (7)0.0126 (7)0.0006 (6)0.0042 (6)0.0000 (5)
C130.0178 (8)0.0097 (7)0.0139 (7)0.0001 (6)0.0045 (6)−0.0019 (5)
C70.0160 (8)0.0192 (8)0.0173 (8)0.0001 (6)0.0015 (6)−0.0039 (6)
C50.0231 (8)0.0144 (7)0.0163 (7)−0.0032 (6)0.0083 (6)−0.0024 (6)
C60.0170 (8)0.0199 (8)0.0209 (8)−0.0043 (6)0.0069 (6)−0.0057 (6)
C140.0193 (8)0.0105 (7)0.0141 (7)−0.0005 (6)0.0051 (6)−0.0023 (6)
C110.0182 (8)0.0100 (7)0.0134 (7)0.0015 (6)0.0048 (6)−0.0012 (5)
C120.0200 (8)0.0104 (7)0.0135 (7)0.0015 (6)0.0040 (6)−0.0008 (6)
C100.0225 (8)0.0116 (7)0.0145 (7)0.0006 (6)0.0063 (6)0.0012 (6)
C40.0245 (8)0.0130 (7)0.0141 (7)0.0045 (6)0.0032 (6)0.0018 (6)
C10.0182 (8)0.0114 (7)0.0145 (7)0.0022 (6)0.0060 (6)−0.0017 (5)
C20.0162 (8)0.0168 (8)0.0179 (8)0.0019 (6)0.0026 (6)−0.0030 (6)
C30.0218 (8)0.0170 (8)0.0152 (7)0.0052 (6)−0.0006 (6)−0.0009 (6)

Geometric parameters (Å, °)

I1—C12.1037 (17)C6—H50.9500
I2—C82.1064 (17)C14—C101.396 (2)
C8—C71.363 (2)C11—C11.438 (2)
C8—C131.439 (2)C11—C121.443 (2)
C9—C111.399 (2)C12—C101.394 (2)
C9—C131.399 (2)C12—C41.430 (2)
C9—H70.9500C10—H80.9500
C13—C141.444 (2)C4—C31.362 (3)
C7—C61.428 (2)C4—H30.9500
C7—H60.9500C1—C21.365 (2)
C5—C61.357 (3)C2—C31.424 (2)
C5—C141.430 (2)C2—H10.9500
C5—H40.9500C3—H20.9500
C7—C8—C13121.86 (16)C9—C11—C1123.92 (15)
C7—C8—I2117.86 (12)C9—C11—C12118.95 (15)
C13—C8—I2120.26 (12)C1—C11—C12117.12 (15)
C11—C9—C13121.88 (15)C10—C12—C4121.32 (15)
C11—C9—H7119.1C10—C12—C11119.07 (15)
C13—C9—H7119.1C4—C12—C11119.60 (15)
C9—C13—C8123.96 (15)C12—C10—C14122.18 (15)
C9—C13—C14119.05 (15)C12—C10—H8118.9
C8—C13—C14116.99 (15)C14—C10—H8118.9
C8—C7—C6120.19 (16)C3—C4—C12120.49 (15)
C8—C7—H6119.9C3—C4—H3119.8
C6—C7—H6119.9C12—C4—H3119.8
C6—C5—C14120.88 (15)C2—C1—C11121.93 (15)
C6—C5—H4119.6C2—C1—I1117.90 (13)
C14—C5—H4119.6C11—C1—I1120.17 (12)
C5—C6—C7120.50 (16)C1—C2—C3119.90 (16)
C5—C6—H5119.8C1—C2—H1120.0
C7—C6—H5119.8C3—C2—H1120.0
C10—C14—C5121.54 (15)C4—C3—C2120.95 (16)
C10—C14—C13118.87 (15)C4—C3—H2119.5
C5—C14—C13119.59 (15)C2—C3—H2119.5
C11—C9—C13—C8178.61 (15)C9—C11—C12—C10−0.2 (2)
C11—C9—C13—C14−0.4 (2)C1—C11—C12—C10178.63 (14)
C7—C8—C13—C9−179.73 (16)C9—C11—C12—C4−179.06 (15)
I2—C8—C13—C9−1.4 (2)C1—C11—C12—C4−0.2 (2)
C7—C8—C13—C14−0.7 (2)C4—C12—C10—C14178.48 (15)
I2—C8—C13—C14177.65 (11)C11—C12—C10—C14−0.3 (2)
C13—C8—C7—C61.1 (2)C5—C14—C10—C12−178.59 (15)
I2—C8—C7—C6−177.28 (12)C13—C14—C10—C120.5 (2)
C14—C5—C6—C7−0.1 (3)C10—C12—C4—C3−178.73 (16)
C8—C7—C6—C5−0.7 (3)C11—C12—C4—C30.1 (2)
C6—C5—C14—C10179.61 (16)C9—C11—C1—C2178.97 (16)
C6—C5—C14—C130.5 (2)C12—C11—C1—C20.2 (2)
C9—C13—C14—C10−0.1 (2)C9—C11—C1—I1−0.2 (2)
C8—C13—C14—C10−179.24 (14)C12—C11—C1—I1−178.97 (11)
C9—C13—C14—C5178.98 (15)C11—C1—C2—C30.0 (2)
C8—C13—C14—C5−0.1 (2)I1—C1—C2—C3179.15 (12)
C13—C9—C11—C1−178.17 (15)C12—C4—C3—C20.1 (2)
C13—C9—C11—C120.6 (2)C1—C2—C3—C4−0.1 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2197).

References

  • Benites, M. delR., Maverick, A. W. & Fronczek, F. R. (1996). Acta Cryst. C52, 647–648.
  • Bruker (2004). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desvergne, J.-P., Chekpo, F. & Bouas-Laurent, H. (1978). J. Chem. Soc. Perkin Trans. 2, pp. 84–87.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Goichi, M., Segawa, K., Suzuki, S. & Toyota, S. (2005). Synthesis, pp. 2116–2118.
  • Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett.11, 4026–4028. [PubMed]
  • Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
  • Lovell, J. M. & Joule, J. A. (1997). Synth. Commun.27, 1209–1216.
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Moon, H., Zeis, R., Borkent, E.-J., Besnard, C., Lovinger, A. J., Siegrist, T., Kloc, C. & Bao, Z. (2004). J. Am. Chem. Soc.126, 15322–15323. [PubMed]
  • Nakanishi, W., Hitosugi, S., Piskareva, A., Shimada, Y., Taka, H., Kita, H. & Isobe, H. (2010). Angew. Chem. Int. Ed. doi:10.1002/anie.201002432. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography