PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1303.
Published online 2010 September 25. doi:  10.1107/S1600536810037232
PMCID: PMC2983293

A binuclear vanadium oxyfluoride: di-μ-oxido-bis­[fluoridooxido(1,10-phenanthro­line)vanadium(V)]

Abstract

The title compound, [V2F2O4(C12H8N2)2], is a centrosymmetric binuclear vanadium(V) species with the metal ions in a distorted octa­hedral environment. The symmetry-equivalent VV atoms exhibit coordination geometries defined by cis-terminal fluoride and oxide groups, unsymmetrically bridging oxide groups and the N-atom donors of the phenanthroline ligands. The crystal packing is stabilized by weak inter­molecular C—H(...)O and C—H(...)F hydrogen bonds.

Related literature

For the properties and applications of oxyfluorido­molybdates and -­vanadates, see: Adil et al. (2010 [triangle]); Burkholder & Zubieta (2004 [triangle]); DeBurgomaster & Zubieta (2010 [triangle]); Jones et al. (2010 [triangle]); Michailovski et al. (2006 [triangle], 2009 [triangle]). For examples of solid phase vanadium oxyfluorides in the presence of coligands, see: Ouellette et al. (2005 [triangle], 2006 [triangle], 2007 [triangle]); Ouellette & Zubieta (2007 [triangle]). For hydro­thermal preparation of metal oxyfluorides, see: Gopalakrishnan (1995 [triangle]); Whittingham (1996 [triangle]); Zubieta (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1303-scheme1.jpg

Experimental

Crystal data

  • [V2F2O4(C12H8N2)2]
  • M r = 564.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1303-efi1.jpg
  • a = 7.8320 (9) Å
  • b = 8.4937 (10) Å
  • c = 9.2007 (11) Å
  • α = 113.741 (3)°
  • β = 102.834 (2)°
  • γ = 97.848 (2)°
  • V = 528.46 (11) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.95 mm−1
  • T = 90 K
  • 0.36 × 0.31 × 0.12 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.626, T max = 0.747
  • 5297 measured reflections
  • 2550 independent reflections
  • 2502 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.084
  • S = 1.14
  • 2550 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2006 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037232/lh5133sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037232/lh5133Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the National Science Foundation, CHE-0907787.

supplementary crystallographic information

Comment

Metal oxyfluorides exhibit a range of compositions and considerable structural versatility that give rise to useful physical properties and potential applications (Adil, et al., 2010; Burkholder & Zubieta, 2004; DeBurgomaster & Zubieta, 2010; Jones et al., 2010; Michailovski, et al., 2006,2009; Ouellette et al., 2005,2006,2007); Ouellette & Zubieta, 2007). Hydrothermal chemistry offers one approach to the preparation of novel metal oxyfluorides where the complexity of the synthetic domain allows incorporation of fluoride into metal oxide frameworks, providing unusual and often unprecedented structures (Gopalakrishnan, 1995; Whittingham, 1996; Zubieta, 2003) Furthermore, the metal-oxyfluoride core can be stabilized or modified by the introduction of appropriate coligands, such as organonitrogen donors of the pyridyl family. In the course of our investigations of the hydrothermal chemistry of metal oxides in the presence of fluoride anion, the title compound [V2F2O4(phen)2] was isolated. The compound crystallizes in the triclinic space group P1 with one binuclear molecule per unit cell, whose halves are related by a center of symmetry at the mid-point of the V···V vector. The V atoms exhibit distorted octahedral geometry with {VFO3N2} coordination (Fig. 1). The µ-bis-oxo bridging mode is characterized by a {V2O2} rhombus with alternating short-long V—O bond distances of 1.724 (1) Å and 2.316 (1) Å, respectively. The terminal oxo-groups lie in the plane of the {V2O2} rhombus and exhibit a pronounced trans-influence as shown by the elongated bridging oxo-group-vanadium distance, V1—O1. The coordination geometry at the vanadium sites also exhibits a fluoride ligand with V—F of 1.787 (1) Å with the V—F vector approximately normal to the {V2O2} rhombus. The V—F vectors of the binuclear unit adopt an anti-orientation with respect to the plane if the {V2O2} rhombus. The geometry is completed by the nitrogen donors of the phenanthroline ligand, which occupy positions trans to the short V—O bond of the rhombus and trans to the terminal fluoride ligand. The crystal packing is stabilized by weak intermolecular C—H···O and C—H···F hydrogen bonds which produces two-dimensional connectivity in the bc plane (Figure 2).

Experimental

A mixture of V2O5 (0.062 g, 0.34 mmol), 1,10-phenanthroline (0.367 g, 2.04 mmol), H2O (5 ml, 277.5 mmol) and HF (0.200 ml, 5.80 mmol) in the mole ratio 1.00:6.03:1620:17.06 was stirred briefly before heating to 170 oC for 48 h (initial and final pH values of 2.5 and 2.0, respectively). Yellow rods suitable for X-ray diffraction were isolated in 65% yield. Anal. Calcd. for C24H20F2N4O4V2: C, 51.0; H, 2.84; N, 9.92; F, 6.73. Found: C, 50.7;H,3.01;N, 9.67; F, 6.55.

Refinement

All hydrogen atoms were discernable in the difference Fourier map. The hydrogen atoms were placed in calculated positions with C—H = 0.95 Å and included in the riding model approximation with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecular dimer of the title compound, with the atom-labeling scheme and the displacement ellipsoids drawn at the 50% probability level. Color scheme: vanadium, orange; oxygen, red; fluorine, green; nitrogen, light blue; carbon, black; hydrogen, ...
Fig. 2.
A packing diagram illustrating the C-H···O and C-H···F contacts (illustrated as multiband cylinders). Color code as for Fig. 1.

Crystal data

[V2F2O4(C12H8N2)2]Z = 1
Mr = 564.29F(000) = 284.0
Triclinic, P1Dx = 1.773 Mg m3Dm = 1.77 (2) Mg m3Dm measured by flotation
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8320 (9) ÅCell parameters from 3266 reflections
b = 8.4937 (10) Åθ = 2.4–28.3°
c = 9.2007 (11) ŵ = 0.95 mm1
α = 113.741 (3)°T = 90 K
β = 102.834 (2)°Plate, yellow
γ = 97.848 (2)°0.36 × 0.31 × 0.12 mm
V = 528.46 (11) Å3

Data collection

Bruker APEX CCD diffractometer2550 independent reflections
Radiation source: fine-focus sealed tube2502 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 512 pixels mm-1θmax = 28.1°, θmin = 2.5°
[var phi] and ω scansh = −10→9
Absorption correction: multi-scan (SADABS; Bruker, 1998)k = −11→11
Tmin = 0.626, Tmax = 0.747l = −12→12
5297 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0297P)2 + 0.608P] where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.32341 (4)0.84898 (4)0.86984 (4)0.01413 (10)
F10.43262 (16)0.67119 (15)0.83110 (14)0.0199 (2)
O10.39833 (17)0.97396 (17)1.08350 (15)0.0130 (3)
O20.11464 (19)0.74797 (18)0.82733 (18)0.0182 (3)
N10.3194 (2)0.8039 (2)0.61559 (19)0.0128 (3)
N20.2439 (2)1.0719 (2)0.83968 (19)0.0131 (3)
C10.3604 (2)0.6671 (2)0.5064 (2)0.0152 (4)
H10.38960.57710.53640.018*
C20.3623 (3)0.6503 (3)0.3487 (2)0.0168 (4)
H20.39380.55140.27460.020*
C30.3182 (2)0.7782 (3)0.3023 (2)0.0161 (4)
H30.31840.76820.19570.019*
C40.2724 (2)0.9249 (2)0.4151 (2)0.0143 (3)
C50.2775 (2)0.9315 (2)0.5709 (2)0.0121 (3)
C60.2197 (2)1.0641 (3)0.3789 (2)0.0169 (4)
H60.21461.06060.27350.020*
C70.1770 (2)1.2007 (3)0.4937 (2)0.0167 (4)
H70.14101.29040.46660.020*
C80.1852 (2)1.2119 (2)0.6554 (2)0.0144 (3)
C90.2355 (2)1.0768 (2)0.6925 (2)0.0126 (3)
C100.1417 (2)1.3488 (2)0.7797 (2)0.0168 (4)
H100.10961.44510.76210.020*
C110.1464 (3)1.3406 (3)0.9264 (2)0.0180 (4)
H110.11451.43021.01030.022*
C120.1982 (3)1.2007 (2)0.9531 (2)0.0159 (4)
H120.20081.19761.05560.019*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.01424 (17)0.01694 (17)0.01513 (17)0.00489 (12)0.00478 (12)0.01048 (13)
F10.0238 (6)0.0184 (5)0.0203 (6)0.0093 (5)0.0074 (5)0.0096 (5)
O10.0156 (6)0.0145 (6)0.0113 (6)0.0054 (5)0.0052 (5)0.0070 (5)
O20.0174 (7)0.0177 (6)0.0218 (7)0.0049 (5)0.0070 (5)0.0103 (6)
N10.0115 (7)0.0145 (7)0.0125 (7)0.0039 (6)0.0032 (6)0.0060 (6)
N20.0123 (7)0.0144 (7)0.0120 (7)0.0044 (6)0.0033 (6)0.0054 (6)
C10.0142 (8)0.0153 (8)0.0155 (9)0.0053 (7)0.0042 (7)0.0059 (7)
C20.0153 (9)0.0181 (9)0.0121 (8)0.0032 (7)0.0049 (7)0.0021 (7)
C30.0136 (8)0.0210 (9)0.0115 (8)0.0022 (7)0.0043 (7)0.0059 (7)
C40.0100 (8)0.0177 (8)0.0139 (8)0.0009 (6)0.0023 (6)0.0075 (7)
C50.0097 (8)0.0137 (8)0.0129 (8)0.0028 (6)0.0028 (6)0.0064 (7)
C60.0129 (8)0.0230 (9)0.0171 (9)0.0011 (7)0.0024 (7)0.0134 (8)
C70.0136 (8)0.0182 (9)0.0213 (9)0.0024 (7)0.0030 (7)0.0134 (8)
C80.0098 (8)0.0151 (8)0.0176 (9)0.0018 (6)0.0017 (7)0.0083 (7)
C90.0099 (8)0.0137 (8)0.0136 (8)0.0025 (6)0.0026 (6)0.0061 (7)
C100.0123 (8)0.0131 (8)0.0231 (10)0.0035 (7)0.0015 (7)0.0081 (7)
C110.0162 (9)0.0154 (9)0.0174 (9)0.0067 (7)0.0023 (7)0.0031 (7)
C120.0159 (9)0.0168 (8)0.0132 (8)0.0061 (7)0.0038 (7)0.0046 (7)

Geometric parameters (Å, °)

V1—O21.6203 (14)C3—H30.9500
V1—O11.7241 (13)C4—C51.404 (2)
V1—F11.7871 (12)C4—C61.438 (3)
V1—N22.1724 (16)C5—C91.430 (2)
V1—N12.2052 (16)C6—C71.360 (3)
V1—O1i2.3162 (13)C6—H60.9500
N1—C11.330 (2)C7—C81.438 (3)
N1—C51.358 (2)C7—H70.9500
N2—C121.329 (2)C8—C91.402 (2)
N2—C91.359 (2)C8—C101.409 (3)
C1—C21.403 (3)C10—C111.373 (3)
C1—H10.9500C10—H100.9500
C2—C31.376 (3)C11—C121.400 (3)
C2—H20.9500C11—H110.9500
C3—C41.415 (3)C12—H120.9500
O2—V1—O1104.98 (7)C2—C3—H3120.4
O2—V1—F1102.29 (6)C4—C3—H3120.4
O1—V1—F1104.75 (6)C5—C4—C3116.98 (17)
O2—V1—N291.64 (6)C5—C4—C6118.79 (17)
O1—V1—N290.52 (6)C3—C4—C6124.22 (17)
F1—V1—N2155.64 (6)N1—C5—C4123.54 (17)
O2—V1—N198.29 (6)N1—C5—C9116.19 (16)
O1—V1—N1152.31 (6)C4—C5—C9120.27 (16)
F1—V1—N184.36 (6)C7—C6—C4120.81 (17)
N2—V1—N173.81 (6)C7—C6—H6119.6
O2—V1—O1i170.39 (6)C4—C6—H6119.6
O1—V1—O1i76.95 (6)C6—C7—C8121.25 (17)
F1—V1—O1i86.10 (5)C6—C7—H7119.4
N2—V1—O1i78.88 (5)C8—C7—H7119.4
N1—V1—O1i77.68 (5)C9—C8—C10117.11 (17)
V1—O1—V1i103.05 (6)C9—C8—C7118.67 (17)
C1—N1—C5118.04 (16)C10—C8—C7124.21 (17)
C1—N1—V1125.58 (12)N2—C9—C8123.62 (17)
C5—N1—V1116.33 (12)N2—C9—C5116.17 (16)
C12—N2—C9117.95 (16)C8—C9—C5120.20 (17)
C12—N2—V1124.57 (13)C11—C10—C8118.87 (17)
C9—N2—V1117.45 (12)C11—C10—H10120.6
N1—C1—C2122.64 (17)C8—C10—H10120.6
N1—C1—H1118.7C10—C11—C12120.26 (18)
C2—C1—H1118.7C10—C11—H11119.9
C3—C2—C1119.50 (17)C12—C11—H11119.9
C3—C2—H2120.2N2—C12—C11122.16 (18)
C1—C2—H2120.2N2—C12—H12118.9
C2—C3—C4119.27 (17)C11—C12—H12118.9
O2—V1—O1—V1i−170.30 (6)C1—N1—C5—C41.1 (3)
F1—V1—O1—V1i82.35 (6)V1—N1—C5—C4178.74 (13)
N2—V1—O1—V1i−78.46 (6)C1—N1—C5—C9−179.58 (16)
N1—V1—O1—V1i−24.09 (15)V1—N1—C5—C9−1.9 (2)
O1i—V1—O1—V1i0.0C3—C4—C5—N1−1.6 (3)
O2—V1—N1—C1−91.43 (15)C6—C4—C5—N1177.65 (16)
O1—V1—N1—C1121.45 (17)C3—C4—C5—C9179.14 (16)
F1—V1—N1—C110.21 (15)C6—C4—C5—C9−1.7 (3)
N2—V1—N1—C1179.27 (16)C5—C4—C6—C70.6 (3)
O1i—V1—N1—C197.44 (15)C3—C4—C6—C7179.75 (17)
O2—V1—N1—C591.11 (13)C4—C6—C7—C80.8 (3)
O1—V1—N1—C5−56.00 (19)C6—C7—C8—C9−1.1 (3)
F1—V1—N1—C5−167.25 (13)C6—C7—C8—C10−179.54 (18)
N2—V1—N1—C51.81 (12)C12—N2—C9—C81.4 (3)
O1i—V1—N1—C5−80.02 (12)V1—N2—C9—C8179.58 (13)
O2—V1—N2—C1278.41 (16)C12—N2—C9—C5−177.17 (16)
O1—V1—N2—C12−26.60 (15)V1—N2—C9—C51.0 (2)
F1—V1—N2—C12−156.19 (15)C10—C8—C9—N20.1 (3)
N1—V1—N2—C12176.56 (16)C7—C8—C9—N2−178.51 (16)
O1i—V1—N2—C12−103.19 (15)C10—C8—C9—C5178.59 (16)
O2—V1—N2—C9−99.64 (13)C7—C8—C9—C50.0 (3)
O1—V1—N2—C9155.36 (13)N1—C5—C9—N20.6 (2)
F1—V1—N2—C925.8 (2)C4—C5—C9—N2179.98 (16)
N1—V1—N2—C9−1.48 (12)N1—C5—C9—C8−178.00 (16)
O1i—V1—N2—C978.77 (13)C4—C5—C9—C81.4 (3)
C5—N1—C1—C20.1 (3)C9—C8—C10—C11−1.6 (3)
V1—N1—C1—C2−177.28 (13)C7—C8—C10—C11176.93 (17)
N1—C1—C2—C3−0.8 (3)C8—C10—C11—C121.6 (3)
C1—C2—C3—C40.3 (3)C9—N2—C12—C11−1.4 (3)
C2—C3—C4—C50.8 (3)V1—N2—C12—C11−179.42 (14)
C2—C3—C4—C6−178.35 (17)C10—C11—C12—N2−0.1 (3)

Symmetry codes: (i) −x+1, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···F1ii0.952.493.393 (2)160
C3—H3···O1iii0.952.443.191 (2)136
C6—H6···O1iii0.952.463.200 (2)135
C10—H10···O2iv0.952.393.282 (2)157

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) x, y, z−1; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5133).

References

  • Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. pp. 5983–5993. [PubMed]
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burkholder, E. & Zubieta, J. (2004). Inorg. Chim. Acta, 357, 279–284.
  • DeBurgomaster, P. & Zubieta, J. (2010). Acta Cryst. E66, m909. [PMC free article] [PubMed]
  • Gopalakrishnan, J. (1995). Chem. Mater.7, 1265–1275.
  • Jones, S., Liu, H., Ouellette, W., Schmidtke, K., O’Connor, C. J. & Zubieta, J. (2010). Inorg. Chem. Commun.13, 491–494.
  • Michailovski, A., Hussain, F., Springler, B., Wagler, J. & Patzke, G. R. (2009). Cryst. Growth Des.9, 755–765.
  • Michailovski, A., Rüegger, H., Skeptzakov, D. & Patzke, G. R. (2006). Inorg. Chem.45, 5641–5652. [PubMed]
  • Ouellette, W., Golub, V., O’Connor, C. J. & Zubieta, J. (2005). Dalton Trans. pp. 291–309. [PubMed]
  • Ouellette, W., Golub, V., O’Connor, C. J. & Zubieta, J. (2007). J. Solid State Chem.180, 2500–2509.
  • Ouellette, W., Yu, M. H., O’Connor, C. J. & Zubieta, J. (2006). Inorg. Chem.45, 7628–7641. [PubMed]
  • Ouellette, W. & Zubieta, J. (2007). Solid State Sci.9, 658–663.
  • Palmer, D. (2006). CrystalMaker CrystalMaker Software Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Whittingham, M. S. (1996). Curr. Opin. Solid State Mater. Sci.1, 227–232.
  • Zubieta, J. (2003). Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, pp. 697–709. Amsterdam: Elsevier.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography