PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2584.
Published online 2010 September 18. doi:  10.1107/S1600536810036639
PMCID: PMC2983288

(1S,2S,6S,9S)-6-Methyl-5-oxobicyclo­[4.4.0]decane-2,9-diyl diacetate

Abstract

The chiral title compound, C15H22O5, is an inter­mediate in the total synthesis of biologically active 9,11-secosterols. In the crystal, the cyclo­hexane rings are trans-fused and both adopt chair conformations. In the crystal, mol­ecules are loosely held together in a layer parallel to (100) by weak inter­molcular C—H(...)O hydrogen bonds accepted by carbonyl O atoms of the acetyl groups.

Related literature

For background to the biological activity of 9,11-secosterols and the synthesis of the title compound, see: Aav et al. (2000 [triangle]). For a related structure, see: Foot et al. (2006 [triangle]). For hydrogen bonding, see: Steiner (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2584-scheme1.jpg

Experimental

Crystal data

  • C15H22O5
  • M r = 282.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2584-efi5.jpg
  • a = 22.885 (5) Å
  • b = 9.340 (2) Å
  • c = 7.2250 (13) Å
  • β = 101.280 (6)°
  • V = 1514.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 300 K
  • 0.50 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART X2S benchtop diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b [triangle]) T min = 0.955, T max = 0.985
  • 4796 measured reflections
  • 1413 independent reflections
  • 1226 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.099
  • S = 1.05
  • 1413 reflections
  • 185 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: GIS (Bruker, 2010 [triangle]); cell refinement: APEX2 (Bruker, 2010 [triangle]) and SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036639/is2600sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036639/is2600Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for funding through grant agreement No. 229830 IC–UP2 under the 7th Framework Programme of the European Commission.

supplementary crystallographic information

Comment

At 300 K the enantiopure compound (1S,2S,6S,9S)-6-Methyl-5-oxobicyclo[4.4.0]decane-2,\ 9-diyl diacetate, (I), crystallizes in the chirodescriptive monoclinic space group C2 (No. 5) with one molecule in the asymmetric unit. Bond lengths and bond angles in the molecule are normal. The trans-fused cyclohexane rings both adopt chair conformation. The acetyl groups are inclined to the least-squares plane, defined by the carbon atoms of the cyclohexane rings, by ~46.4 (O2O3C12C13) and ~51.2° (O4O5C14C15), respectively (Fig. 1). The molecules are loosely hold together in layers parallel to the A-plane with a repeating distance of d100/2~11.2 Å, within which weak intra- and intermolecular hydrogen bonds (Steiner, 2002) occur (Fig, 2, Table 1). Between the layers only hydrophobic interactions are present.

Experimental

Enantiopure (I) was synthesized according to Aav et al. (2000). Single crystals were grown by slow evaporation of a solution of (I) in acetone/petrol ether.

Refinement

Owing to absence of significant anomalous scattering, Friedel pairs were merged and all f'' values were set to zero for the final refinement. The absolute structure was assigned from the synthetic procedure. Hydrogen atoms were included at calculated positions [d(C—H) = 0.96 (CH3), 0.97 (CH2) or 0.98 Å (CH)] and treated as riding on their base atoms, with Uiso(H) = 1.2Ueq(C) (CH2 and CH) or 1.5Ueq(C) (CH3).

Figures

Fig. 1.
Asymmetric unit in the crystal structure of (I). Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. Cyan dashed lines indicate weak hydrogen bonds. [Symmetry codes: (i) x, y, 1 + z; (ii) x, 1 + y, z; (iii) 1/2 - x, 1/2 + y, ...
Fig. 2.
Packing diagram of (I). Red planes indicate the boundaries of the layers within which weak hydrogen bonds occur. The unit cell is outlined.

Crystal data

C15H22O5F(000) = 608
Mr = 282.33Dx = 1.238 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2044 reflections
a = 22.885 (5) Åθ = 2.4–23.9°
b = 9.340 (2) ŵ = 0.09 mm1
c = 7.2250 (13) ÅT = 300 K
β = 101.280 (6)°Needle, colorless
V = 1514.5 (5) Å30.50 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker SMART X2S benchtop diffractometer1413 independent reflections
Radiation source: XOS X-beam microfocus source1226 reflections with I > 2σ(I)
doubly curved silicon crystalRint = 0.041
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b)h = −27→27
Tmin = 0.955, Tmax = 0.985k = −11→11
4796 measured reflectionsl = −7→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.099w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0812P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1413 reflectionsΔρmax = 0.15 e Å3
185 parametersΔρmin = −0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.41782 (12)0.1268 (3)0.8403 (4)0.0548 (7)
H1A0.45050.14290.94600.066*
H1B0.38540.08370.88910.066*
C20.43814 (13)0.0228 (3)0.7031 (5)0.0603 (8)
H2A0.47350.06030.66490.072*
H2B0.4484−0.06830.76560.072*
C30.38967 (12)0.0004 (3)0.5307 (4)0.0507 (7)
H30.3559−0.04840.56830.061*
C40.36824 (12)0.1415 (3)0.4352 (4)0.0481 (6)
H4B0.33590.12370.32920.058*
H4A0.40050.18680.38780.058*
C50.34678 (11)0.2411 (2)0.5769 (4)0.0417 (6)
H50.31540.18950.62410.050*
C60.31877 (12)0.3794 (3)0.4877 (4)0.0460 (6)
H60.34850.43720.44050.055*
C70.29180 (14)0.4638 (3)0.6307 (4)0.0619 (8)
H7B0.25900.40990.66300.074*
H7A0.27610.55360.57450.074*
C80.33767 (15)0.4945 (3)0.8099 (4)0.0625 (8)
H8A0.36530.56650.78220.075*
H8B0.31740.53380.90440.075*
C90.37226 (13)0.3646 (3)0.8900 (4)0.0559 (7)
O10.38133 (13)0.3386 (3)1.0571 (3)0.0894 (8)
C100.39716 (11)0.2710 (3)0.7505 (4)0.0458 (6)
C110.45030 (12)0.3532 (4)0.6993 (4)0.0619 (7)
H11A0.43770.44770.65680.093*
H11B0.46450.30330.60060.093*
H11C0.48170.35980.80850.093*
O20.27152 (7)0.33569 (19)0.3333 (2)0.0510 (5)
C120.25230 (13)0.4324 (3)0.1969 (4)0.0523 (7)
O30.26894 (10)0.5536 (2)0.2034 (3)0.0678 (6)
C130.20704 (15)0.3674 (4)0.0446 (4)0.0689 (9)
H13A0.19060.4400−0.04460.103*
H13B0.17580.32570.09820.103*
H13C0.22540.2945−0.01830.103*
O40.41045 (9)−0.08472 (18)0.3880 (3)0.0610 (6)
C140.41311 (14)−0.2269 (3)0.4139 (5)0.0673 (9)
O50.40094 (15)−0.2845 (3)0.5499 (5)0.1017 (10)
C150.43333 (19)−0.3023 (4)0.2556 (6)0.0896 (12)
H15A0.4749−0.32500.29200.134*
H15B0.4272−0.24140.14640.134*
H15C0.4109−0.38890.22630.134*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0477 (15)0.0635 (17)0.0480 (15)−0.0007 (12)−0.0035 (12)0.0094 (13)
C20.0505 (16)0.0594 (17)0.0648 (19)0.0099 (13)−0.0041 (14)0.0092 (14)
C30.0501 (15)0.0431 (12)0.0586 (17)0.0034 (11)0.0097 (13)0.0039 (13)
C40.0499 (15)0.0457 (13)0.0460 (15)0.0032 (11)0.0029 (12)0.0039 (11)
C50.0389 (12)0.0430 (12)0.0428 (14)−0.0014 (10)0.0071 (11)0.0087 (11)
C60.0471 (13)0.0471 (13)0.0435 (14)0.0033 (10)0.0081 (12)0.0023 (11)
C70.0649 (18)0.0655 (18)0.0561 (17)0.0190 (14)0.0137 (16)0.0037 (15)
C80.080 (2)0.0593 (16)0.0500 (16)0.0057 (15)0.0167 (16)−0.0031 (14)
C90.0597 (16)0.0617 (17)0.0464 (16)−0.0076 (13)0.0107 (13)−0.0014 (13)
O10.128 (2)0.0996 (19)0.0414 (12)0.0212 (18)0.0181 (13)0.0080 (13)
C100.0410 (13)0.0527 (14)0.0430 (14)−0.0023 (11)0.0067 (11)0.0048 (11)
C110.0475 (14)0.0716 (18)0.0660 (18)−0.0132 (14)0.0093 (13)−0.0024 (16)
O20.0517 (10)0.0500 (10)0.0470 (10)0.0037 (8)−0.0007 (8)0.0103 (9)
C120.0601 (16)0.0520 (15)0.0464 (16)0.0186 (13)0.0140 (14)0.0063 (13)
O30.0948 (17)0.0498 (11)0.0581 (13)0.0096 (11)0.0132 (11)0.0094 (10)
C130.079 (2)0.0689 (19)0.0520 (17)0.0173 (16)−0.0041 (15)0.0027 (15)
O40.0668 (13)0.0433 (10)0.0724 (15)0.0070 (8)0.0127 (11)0.0004 (9)
C140.0613 (18)0.0466 (16)0.085 (3)0.0011 (13)−0.0078 (17)0.0000 (16)
O50.138 (3)0.0503 (12)0.117 (2)−0.0015 (14)0.024 (2)0.0167 (14)
C150.093 (3)0.0586 (18)0.106 (3)0.0127 (18)−0.007 (2)−0.0224 (19)

Geometric parameters (Å, °)

C1—C21.524 (4)C8—H8A0.9700
C1—C101.528 (4)C8—H8B0.9700
C1—H1A0.9700C9—O11.209 (3)
C1—H1B0.9700C9—C101.526 (4)
C2—C31.512 (4)C10—C111.543 (4)
C2—H2A0.9700C11—H11A0.9600
C2—H2B0.9700C11—H11B0.9600
C3—O41.453 (3)C11—H11C0.9600
C3—C41.523 (4)O2—C121.346 (3)
C3—H30.9800C12—O31.193 (4)
C4—C51.533 (3)C12—O31.193 (4)
C4—H4B0.9700C12—C131.485 (4)
C4—H4A0.9700C13—H13A0.9600
C5—C61.527 (3)C13—H13B0.9600
C5—C101.554 (3)C13—H13C0.9600
C5—H50.9800O4—C141.340 (4)
C6—O21.452 (3)C14—O51.200 (4)
C6—C71.523 (4)C14—O51.200 (4)
C6—H60.9800C14—C151.492 (5)
C7—C81.526 (4)C15—H15A0.9600
C7—H7B0.9700C15—H15B0.9600
C7—H7A0.9700C15—H15C0.9600
C8—C91.502 (4)
C2—C1—C10113.2 (2)C7—C8—H8A108.9
C2—C1—H1A108.9C9—C8—H8B108.9
C10—C1—H1A108.9C7—C8—H8B108.9
C2—C1—H1B108.9H8A—C8—H8B107.7
C10—C1—H1B108.9O1—C9—C8121.5 (3)
H1A—C1—H1B107.8O1—C9—C10122.1 (3)
C3—C2—C1110.9 (2)C8—C9—C10116.4 (2)
C3—C2—H2A109.5C9—C10—C1110.4 (2)
C1—C2—H2A109.5C9—C10—C11106.7 (2)
C3—C2—H2B109.5C1—C10—C11110.3 (2)
C1—C2—H2B109.5C9—C10—C5108.8 (2)
H2A—C2—H2B108.1C1—C10—C5107.7 (2)
O4—C3—C2111.8 (2)C11—C10—C5113.0 (2)
O4—C3—C4105.9 (2)C10—C11—H11A109.5
C2—C3—C4111.9 (2)C10—C11—H11B109.5
O4—C3—H3109.1H11A—C11—H11B109.5
C2—C3—H3109.1C10—C11—H11C109.5
C4—C3—H3109.1H11A—C11—H11C109.5
C3—C4—C5109.8 (2)H11B—C11—H11C109.5
C3—C4—H4B109.7C12—O2—C6117.5 (2)
C5—C4—H4B109.7O3—C12—O2123.5 (3)
C3—C4—H4A109.7O3—C12—O2123.5 (3)
C5—C4—H4A109.7O3—C12—C13126.0 (3)
H4B—C4—H4A108.2O3—C12—C13126.0 (3)
C6—C5—C4113.18 (19)O2—C12—C13110.4 (3)
C6—C5—C10111.9 (2)C12—C13—H13A109.5
C4—C5—C10111.34 (19)C12—C13—H13B109.5
C6—C5—H5106.7H13A—C13—H13B109.5
C4—C5—H5106.7C12—C13—H13C109.5
C10—C5—H5106.7H13A—C13—H13C109.5
O2—C6—C7109.1 (2)H13B—C13—H13C109.5
O2—C6—C5105.94 (19)C14—O4—C3117.1 (3)
C7—C6—C5110.1 (2)O5—C14—O4123.2 (3)
O2—C6—H6110.5O5—C14—O4123.2 (3)
C7—C6—H6110.5O5—C14—C15124.9 (3)
C5—C6—H6110.5O5—C14—C15124.9 (3)
C6—C7—C8111.7 (2)O4—C14—C15111.9 (3)
C6—C7—H7B109.3C14—C15—H15A109.5
C8—C7—H7B109.3C14—C15—H15B109.5
C6—C7—H7A109.3H15A—C15—H15B109.5
C8—C7—H7A109.3C14—C15—H15C109.5
H7B—C7—H7A107.9H15A—C15—H15C109.5
C9—C8—C7113.5 (3)H15B—C15—H15C109.5
C9—C8—H8A108.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O30.972.653.143 (4)112
C8—H8B···O3i0.972.623.551 (4)161
C13—H13C···O3ii0.962.633.533 (4)156
C2—H2B···O50.972.653.134 (4)111
C8—H8A···O5iii0.972.443.309 (4)149
C11—H11A···O5iii0.962.703.662 (4)178

Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y−1/2, −z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2600).

References

  • Aav, R., Kanger, T., Pehk, T. & Lopp, M. (2000). Synlett, 4, 529–531.
  • Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2010). GIS and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Foot, J. S., Phillis, A. T., Sharp, P. P., Willis, A. C. & Banwell, M. G. (2006). Tetrahedron Lett.47, 6817–6820.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. [PubMed]
  • Sheldrick, G. M. (2008b). SADABS University of Göttingen, Germany.
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–76. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography