PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2690.
Published online 2010 September 30. doi:  10.1107/S1600536810038468
PMCID: PMC2983287

3-Phenyl-2-(1H-tetra­zol-1-yl)propanoic acid monohydrate

Abstract

In the title compound, C10H10N4O2·H2O, the dihedral angle between the tetra­zole and benzene rings is 63.24 (11)°. The crystal structure is stabilized by intra­molecular O—H(...)N and O—H(...)O hydrogen bonds.

Related literature

For background to the applications of tetra­zole metal derivatives, see: Gaponik et al. (2006 [triangle]); Zhao et al. (2008 [triangle]); Xiao et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2690-scheme1.jpg

Experimental

Crystal data

  • C10H10N4O2·H2O
  • M r = 236.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2690-efi1.jpg
  • a = 24.001 (4) Å
  • b = 8.3769 (19) Å
  • c = 5.7455 (11) Å
  • V = 1155.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.40 × 0.25 × 0.10 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.972, T max = 0.987
  • 11450 measured reflections
  • 1461 independent reflections
  • 1237 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.098
  • S = 1.11
  • 1461 reflections
  • 155 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810038468/rz2488sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038468/rz2488Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Young Researchers fund of Southeast University (grant No. 4007041027).

supplementary crystallographic information

Comment

Recently tetrazoles have been area of interest of coordination chemistry because of various applications of their metal derivatives (Gaponik et al., 2006; Zhao et al., 2008). A great variety of tetrazoles, especially substituted ones, are investigated as ligands. Recently, we have reported a few tetrazole compounds (Xiao et al., 2009). As an extension of our work on the structural characterization of tetrazole compounds, the structure of the title compound is reported here.

In the molecule of the title compound (Fig. 1) bond lengths and angles have normal values. The dihedral angle between the planes of the tetrazole and phenyl rings is 63.24 (0.11)°. The crystal structure (Fig. 2) is stabilized by intramolecular O—H···N and O—H···O hydrogen bonds (Table 1).

Experimental

2-Amino-3-phenylpropanoic acid (1.65 g, 10 mmol) and triethoxymethane (2.96 g, 20 mmol) was added to a mixture of sodium azide (0.65 g, 10 mmol) in acetic acid. After 3 h at 80°C, the mixture was cooled to room temperature and poured into 50 ml HCl (30%) to afford a white precipitate of the title compound. Colourless crystals suitable for X-ray diffraction were obtained after 3 days by slow evaporation of an ethanol solution.

Refinement

All H atoms were detected in a difference map, but were placed in calculated positions and refined using a riding motion approximation, with C—H = 0.93–0.97 Å, O—H = 0.82–0.92 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O). In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
Packing diagram of the title compound, showing the structure down the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C10H10N4O2·H2OF(000) = 496
Mr = 236.24Dx = 1.358 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2576 reflections
a = 24.001 (4) Åθ = 2.4–27.5°
b = 8.3769 (19) ŵ = 0.10 mm1
c = 5.7455 (11) ÅT = 293 K
V = 1155.1 (4) Å3Prism, colourless
Z = 40.40 × 0.25 × 0.10 mm

Data collection

Rigaku SCXmini diffractometer1461 independent reflections
Radiation source: fine-focus sealed tube1237 reflections with I > 2σ(I)
graphiteRint = 0.049
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.4°
ω scansh = −30→31
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.972, Tmax = 0.987l = −7→7
11450 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.11w = 1/[σ2(Fo2) + (0.045P)2 + 0.0812P] where P = (Fo2 + 2Fc2)/3
1461 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.17744 (13)0.5430 (3)0.8029 (6)0.0523 (7)
H10.18490.58340.65530.063*
C20.22253 (10)0.8730 (3)0.9938 (5)0.0370 (5)
C30.16456 (9)0.8029 (3)1.0194 (5)0.0385 (6)
H30.15230.82341.17930.046*
C40.12188 (11)0.8794 (3)0.8571 (6)0.0494 (7)
H4A0.12150.99370.88340.059*
H4B0.13320.86120.69720.059*
C50.06378 (11)0.8150 (3)0.8910 (5)0.0466 (6)
C60.03288 (12)0.8572 (4)1.0852 (6)0.0605 (8)
H60.04800.92581.19570.073*
C7−0.02045 (13)0.7972 (4)1.1151 (7)0.0738 (11)
H7−0.04100.82641.24550.089*
C8−0.04305 (13)0.6958 (4)0.9550 (8)0.0714 (10)
H8−0.07870.65510.97670.086*
C9−0.01295 (13)0.6545 (4)0.7634 (8)0.0728 (10)
H9−0.02820.58580.65350.087*
C100.03997 (12)0.7138 (4)0.7312 (6)0.0617 (8)
H100.06000.68500.59910.074*
N10.16699 (8)0.6303 (2)0.9891 (4)0.0398 (5)
N20.15902 (10)0.5316 (3)1.1690 (5)0.0540 (7)
N30.16442 (12)0.3885 (3)1.0871 (5)0.0611 (7)
N40.17577 (12)0.3922 (3)0.8561 (5)0.0594 (7)
O10.26404 (6)0.79317 (19)0.9755 (4)0.0431 (4)
O20.22055 (7)1.02860 (19)0.9997 (5)0.0489 (4)
H20.25221.06470.99090.073*
O1W0.31635 (8)0.1603 (2)0.9820 (4)0.0574 (5)
H1A0.31910.23410.87100.086*
H1B0.31950.23131.10330.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0678 (18)0.0421 (16)0.0470 (17)0.0014 (14)0.0082 (15)0.0055 (13)
C20.0443 (12)0.0387 (12)0.0281 (11)−0.0003 (9)−0.0035 (12)0.0023 (13)
C30.0404 (12)0.0343 (11)0.0408 (15)0.0011 (9)0.0001 (11)0.0066 (11)
C40.0468 (14)0.0435 (14)0.0579 (17)0.0004 (11)−0.0052 (13)0.0097 (14)
C50.0420 (14)0.0426 (14)0.0553 (16)0.0051 (11)−0.0044 (13)0.0077 (13)
C60.0555 (18)0.0553 (17)0.071 (2)0.0057 (14)0.0008 (17)−0.0098 (16)
C70.058 (2)0.081 (2)0.082 (3)0.0169 (17)0.0193 (19)−0.001 (2)
C80.0429 (15)0.074 (2)0.098 (3)−0.0014 (14)0.000 (2)0.004 (2)
C90.055 (2)0.078 (2)0.086 (3)−0.0076 (16)−0.012 (2)−0.012 (2)
C100.0507 (17)0.072 (2)0.0621 (19)0.0008 (15)−0.0013 (16)−0.0097 (17)
N10.0407 (10)0.0357 (10)0.0429 (11)−0.0008 (8)0.0012 (11)0.0081 (11)
N20.0709 (17)0.0437 (14)0.0473 (13)0.0007 (12)0.0061 (13)0.0108 (12)
N30.0820 (18)0.0393 (14)0.0619 (16)0.0022 (12)0.0129 (15)0.0076 (13)
N40.0760 (17)0.0398 (14)0.0624 (17)0.0014 (12)0.0127 (14)0.0033 (13)
O10.0433 (10)0.0469 (9)0.0391 (9)0.0032 (7)0.0022 (9)0.0037 (9)
O20.0489 (9)0.0371 (9)0.0607 (11)−0.0051 (7)−0.0016 (12)−0.0002 (11)
O1W0.0674 (12)0.0484 (10)0.0564 (11)−0.0175 (8)−0.0066 (13)0.0071 (12)

Geometric parameters (Å, °)

C1—N41.301 (4)C6—H60.9300
C1—N11.320 (4)C7—C81.365 (5)
C1—H10.9300C7—H70.9300
C2—O11.205 (3)C8—C91.362 (6)
C2—O21.305 (3)C8—H80.9300
C2—C31.517 (3)C9—C101.376 (4)
C3—N11.457 (3)C9—H90.9300
C3—C41.526 (4)C10—H100.9300
C3—H30.9800N1—N21.337 (3)
C4—C51.508 (4)N2—N31.294 (4)
C4—H4A0.9700N3—N41.355 (4)
C4—H4B0.9700O2—H20.8200
C5—C101.374 (4)O1W—H1A0.8904
C5—C61.385 (4)O1W—H1B0.9193
C6—C71.385 (4)
N4—C1—N1110.0 (3)C5—C6—H6119.9
N4—C1—H1125.0C7—C6—H6119.9
N1—C1—H1125.0C8—C7—C6120.6 (3)
O1—C2—O2126.0 (2)C8—C7—H7119.7
O1—C2—C3123.48 (19)C6—C7—H7119.7
O2—C2—C3110.55 (18)C9—C8—C7119.5 (3)
N1—C3—C2109.64 (18)C9—C8—H8120.3
N1—C3—C4111.7 (2)C7—C8—H8120.3
C2—C3—C4113.2 (2)C8—C9—C10120.4 (3)
N1—C3—H3107.3C8—C9—H9119.8
C2—C3—H3107.3C10—C9—H9119.8
C4—C3—H3107.3C5—C10—C9121.1 (3)
C5—C4—C3113.1 (2)C5—C10—H10119.4
C5—C4—H4A109.0C9—C10—H10119.4
C3—C4—H4A109.0C1—N1—N2108.12 (19)
C5—C4—H4B109.0C1—N1—C3130.9 (2)
C3—C4—H4B109.0N2—N1—C3121.0 (2)
H4A—C4—H4B107.8N3—N2—N1106.1 (2)
C10—C5—C6118.2 (3)N2—N3—N4110.8 (3)
C10—C5—C4121.2 (3)C1—N4—N3105.0 (3)
C6—C5—C4120.5 (3)C2—O2—H2109.5
C5—C6—C7120.1 (3)H1A—O1W—H1B95.0
O1—C2—C3—N1−7.0 (4)C4—C5—C10—C9179.6 (3)
O2—C2—C3—N1174.4 (2)C8—C9—C10—C50.3 (5)
O1—C2—C3—C4−132.5 (3)N4—C1—N1—N20.8 (3)
O2—C2—C3—C448.9 (3)N4—C1—N1—C3179.4 (2)
N1—C3—C4—C558.4 (3)C2—C3—N1—C1−68.8 (3)
C2—C3—C4—C5−177.2 (2)C4—C3—N1—C157.5 (3)
C3—C4—C5—C10−106.6 (3)C2—C3—N1—N2109.7 (3)
C3—C4—C5—C673.5 (3)C4—C3—N1—N2−124.0 (3)
C10—C5—C6—C70.3 (5)C1—N1—N2—N3−0.4 (3)
C4—C5—C6—C7−179.9 (3)C3—N1—N2—N3−179.2 (2)
C5—C6—C7—C80.3 (5)N1—N2—N3—N40.0 (3)
C6—C7—C8—C9−0.6 (6)N1—C1—N4—N3−0.8 (4)
C7—C8—C9—C100.3 (6)N2—N3—N4—C10.5 (4)
C6—C5—C10—C9−0.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1Wi0.821.742.552 (2)174
O1W—H1B···N4ii0.921.982.903 (4)177
O1W—H1A···N3iii0.892.123.003 (3)171

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y, z+1/2; (iii) −x+1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2488).

References

  • Gaponik, P. N., Voitekhovich, S. V. & Ivashkevich, O. A. (2006). Russ. Chem. Rev.75, 507–540.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xiao, J., Wang, W. X., Lin, J. R. & Zhao, H. (2009). J. Mol. Struct.933, 98–103.
  • Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev.37, 84–100. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography