PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2599.
Published online 2010 September 18. doi:  10.1107/S1600536810036950
PMCID: PMC2983279

1-(3-Chloro­pyridin-2-yl)hydrazine

Abstract

The title compound, C5H6ClN3, was synthesized by the reaction of 2,3-dichloro­pyridine and hydrazine hydrate. An intra­molecular N—H(...)Cl hydrogen bond results in the formation of a planar (mean deviation 0.038 Å) five-membered ring. In the crystal, inter­molecular N—H(...)N hydrogen bonds link the mol­ecules into a three-dimensional network.

Related literature

The title compound is an inter­mediate in the synthesis of Rynaxypyr, a new insecticidal anthranilic diamide. For the synthesis and biological properties of Rynaxypyr, see: Lahm et al. (2007 [triangle]). For standard bond lengths, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2599-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN3
  • M r = 143.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2599-efi1.jpg
  • a = 11.637 (2) Å
  • b = 3.9060 (8) Å
  • c = 13.946 (3) Å
  • β = 103.46 (3)°
  • V = 616.5 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.52 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.860, T max = 0.950
  • 2173 measured reflections
  • 1124 independent reflections
  • 936 reflections with I > 2σ(I)
  • R int = 0.036
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.082
  • S = 1.04
  • 1124 reflections
  • 91 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036950/im2217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036950/im2217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for allowing the Enraf–Nonius CAD-4 diffractometer to be used for this research project.

supplementary crystallographic information

Comment

1-(3-Chloropyridin-2-yl)hydrazine is an important intermediate in the synthesis of Rynaxypyr, a new insecticidal anthranilic diamide, which acts as a potent and selective ryanodine receptor activator. Rynaxypyr is characterized by its high levels of insecticidal activity and low toxicity to mammals attributed to a high selectivity for insect over mammalian ryanodine receptors (Lahm et al., 2007).

We report herein the crystal structure of the title compound,(I). In the molecule of the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within normal ranges. The pyridine ring A(C1/C2/C3/N1/C4/C5) is, of course, planar with a mean deviation from planarity of 0.0027 Å (C1 - 0.0013, C2 - 0.0027, C3 0.0037, N1 - 0.0005, C4 - 0.0034 and C5 0.0042 Å, respectively). An intramolecular N—H···Cl hydrogen bond (Table 1) results in the formation of one planar five-membered ring B(C4/C5/Cl/H2A/N2) with a mean deviation from planarity of 0.0380 Å (C4 0.0119, C5 - 0.0382, Cl 0.0382, H2A -0.0568 and N2 0.0503 Å, respectively). The dihedral angle A/B = 3.5 (1) Å, showing the rings to be almost coplanar. In the crystal structure, three intermolecular N—H···N hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2).

Experimental

Hydrazine hydrate (10 mmol) was added dropwise to a refluxing solution of 2,3-dichloropyridine (10 mmol) in ethanol. The reaction mixture was stirred and refluxed for 2 h. After cooling and filtering, crude compound (I) was obtained. Pure compound (I) was obtained by recrystallization from THF (15 ml, yield 65%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution.

Refinement

All H atoms bonded to carbon were placed geometrically with distances of 0.93 Å refined using a riding motion approximation with Uiso(H) = 1.2 Ueq(C) of the carrier atom. H atoms at the hyrazido substituent were found in the difference Fourier map and refined freely.

Figures

Fig. 1.
Molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
Fig. 2.
Partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C5H6ClN3F(000) = 296
Mr = 143.58Dx = 1.547 Mg m3
Monoclinic, P21/cMelting point = 427–429 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.637 (2) ÅCell parameters from 25 reflections
b = 3.9060 (8) Åθ = 9–13°
c = 13.946 (3) ŵ = 0.52 mm1
β = 103.46 (3)°T = 293 K
V = 616.5 (2) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer936 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 0→13
Absorption correction: ψ scan (North et al., 1968)k = −4→4
Tmin = 0.860, Tmax = 0.950l = −16→16
2173 measured reflections3 standard reflections every 200 reflections
1124 independent reflections intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082w = 1/[σ2(Fo2) + (0.0422P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1124 reflectionsΔρmax = 0.17 e Å3
91 parametersΔρmin = −0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.166 (16)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl0.18715 (4)0.20164 (13)0.95683 (4)0.0436 (2)
N10.33408 (13)0.6634 (4)1.20853 (11)0.0332 (4)
N20.41097 (14)0.4864 (5)1.07771 (12)0.0394 (4)
H2A0.4020 (19)0.408 (6)1.0174 (17)0.059*
N30.51985 (14)0.6524 (5)1.11726 (13)0.0388 (4)
H3B0.509 (2)0.874 (7)1.1298 (17)0.058*
H3A0.554 (2)0.586 (6)1.1821 (16)0.058*
C10.11354 (17)0.4002 (5)1.11712 (14)0.0374 (5)
H10.03990.31181.08660.045*
C20.13219 (17)0.5562 (5)1.21092 (14)0.0408 (5)
H20.07160.57321.24390.049*
C30.24223 (18)0.6808 (5)1.25120 (15)0.0377 (5)
H30.25450.78541.31270.045*
C40.31800 (15)0.5159 (4)1.12028 (13)0.0286 (4)
C50.20482 (16)0.3823 (5)1.07282 (13)0.0307 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl0.0486 (3)0.0455 (3)0.0348 (3)−0.0082 (2)0.0057 (2)−0.0066 (2)
N10.0373 (9)0.0332 (9)0.0296 (8)0.0007 (7)0.0089 (7)−0.0007 (7)
N20.0337 (9)0.0518 (11)0.0339 (9)−0.0069 (8)0.0103 (7)−0.0107 (8)
N30.0334 (9)0.0437 (10)0.0392 (9)−0.0045 (8)0.0083 (7)−0.0041 (8)
C10.0358 (10)0.0331 (11)0.0436 (11)−0.0017 (8)0.0095 (9)0.0098 (9)
C20.0415 (11)0.0414 (12)0.0445 (12)0.0053 (9)0.0202 (9)0.0071 (10)
C30.0481 (12)0.0333 (10)0.0348 (10)0.0054 (9)0.0158 (9)0.0014 (8)
C40.0323 (10)0.0231 (9)0.0304 (9)0.0017 (7)0.0072 (7)0.0026 (7)
C50.0365 (10)0.0251 (9)0.0292 (9)0.0009 (8)0.0048 (8)0.0031 (7)

Geometric parameters (Å, °)

Cl—C51.7327 (18)C1—C51.349 (3)
N1—C41.332 (2)C1—C21.413 (3)
N1—C31.341 (2)C1—H10.9300
N2—C41.355 (2)C2—C31.363 (3)
N2—N31.416 (2)C2—H20.9300
N2—H2A0.88 (2)C3—H30.9300
N3—H3B0.90 (3)C4—C51.428 (2)
N3—H3A0.94 (2)
C4—N1—C3118.50 (17)C3—C2—H2121.2
C4—N2—N3121.60 (16)C1—C2—H2121.2
C4—N2—H2A121.3 (15)N1—C3—C2124.65 (19)
N3—N2—H2A115.4 (15)N1—C3—H3117.7
N2—N3—H3B111.6 (15)C2—C3—H3117.7
N2—N3—H3A112.9 (14)N1—C4—N2119.14 (16)
H3B—N3—H3A97.2 (19)N1—C4—C5120.15 (16)
C5—C1—C2118.59 (18)N2—C4—C5120.69 (16)
C5—C1—H1120.7C1—C5—C4120.56 (17)
C2—C1—H1120.7C1—C5—Cl120.90 (15)
C3—C2—C1117.55 (18)C4—C5—Cl118.54 (14)
C5—C1—C2—C30.1 (3)C2—C1—C5—C40.5 (3)
C4—N1—C3—C20.3 (3)C2—C1—C5—Cl−178.77 (13)
C1—C2—C3—N1−0.6 (3)N1—C4—C5—C1−0.8 (3)
C3—N1—C4—N2−177.86 (17)N2—C4—C5—C1177.42 (18)
C3—N1—C4—C50.3 (3)N1—C4—C5—Cl178.52 (13)
N3—N2—C4—N1−9.6 (3)N2—C4—C5—Cl−3.3 (2)
N3—N2—C4—C5172.20 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl0.88 (2)2.58 (2)2.970 (2)108 (2)
N2—H2A···N3i0.88 (2)2.28 (2)3.058 (3)148 (2)
N3—H3A···N1ii0.94 (2)2.41 (2)3.243 (3)148 (2)
N3—H3B···N2iii0.90 (2)2.68 (2)3.492 (3)151 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, y−1/2, −z+5/2; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2217).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Lahm, G. P., Stevenson, T. M., Selby, T. P., Cordova, F. D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett.17, 6274–6279. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography