PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2592.
Published online 2010 September 18. doi:  10.1107/S1600536810036755
PMCID: PMC2983272

2,2′-(Disulfanedi­yl)dibenzoic acid–N,N′-bis­(4-pyridyl­meth­yl)ethane­dithio­amide (1/1)

Abstract

The asymmetric unit of the title co-crystal, C14H14N4S2·C14H10O4S2, comprises a twisted 2,2′-(disulfanedi­yl)dibenzoic acid mol­ecule [dihedral angle between the benzene rings = 83.53 (14)°] and a U-shaped mol­ecule of N,N′-bis­(4-pyridyl­meth­yl)ethane­dithio­amide in which intra­molecular N—H(...)S hydrogen bonds are observed. Two mol­ecules of each form a centrosymmetric ring, with an extended chair conformation, mediated by carbox­yl–pyridine O—H(...)N hydrogen bonds between the carboxylic acid groups of two 2,2′-(disulfanediyl)dibenzoic acid molecules and pyridine-N atoms of two N,N’-bis(4-pyridylmethyl)ethanedithioamide molecules. The tetra­meric aggregates are linked into a supra­molecular chain along the b axis via amide–carbonyl N—H(...)O hydrogen bonds.

Related literature

For related studies on co-crystal formation involving 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007 [triangle], 2010 [triangle]); Broker et al. (2008 [triangle]); Arman et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2592-scheme1.jpg

Experimental

Crystal data

  • C14H14N4S2·C14H10O4S2
  • M r = 608.75
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2592-efi1.jpg
  • a = 18.502 (5) Å
  • b = 10.624 (3) Å
  • c = 15.026 (4) Å
  • β = 110.235 (5)°
  • V = 2771.3 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 98 K
  • 0.38 × 0.26 × 0.10 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • 16758 measured reflections
  • 6348 independent reflections
  • 5349 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.156
  • S = 1.13
  • 6348 reflections
  • 373 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036755/hg2714sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036755/hg2714Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Co-crystallization of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid with various pyridine donors has led to the isolation of a variety of supramolecular motifs (Broker & Tiekink, 2007; Broker et al., 2008; Broker & Tiekink, 2010; Arman et al., 2010). Herein, the structure determination of the 1:1 co-crystal obtained from the co-crystallization of 2,2'-(disulfanediyl)dibenzoic acid with N,N'-bis(4-pyridylmethyl)ethanedithioamide is described. The asymmetric unit of the resulting 1:1 co-crystal contains one molecule of 2,2'-(disulfanediyl)dibenzoic acid, Fig. 1, and N,N'-bis(4-pyridylmethyl)ethanedithioamide, Fig. 2.

In the acid, the expected conformation is observed (Broker & Tiekink, 2007), stabilized in part by two close S···O(carbonyl) interactions, i.e. S3···O1 = 2.759 (2) Å and S4···O3 = 2.687 (3) Å; the dihedral angle formed between the benzene rings = 83.53 (14) °. The molecule of N,N'-bis(4-pyridylmethyl)ethanedithioamide adopts a U-shaped conformation as both pyridyl groups lie to the same side of the molecule with the C2—C1—C6—N2 and N3—C9—C10—C11 torsion angles being 40.8 (4) and 146.4 (3) °, respectively. Intramolecular N—H···S hydrogen bonds are noted, Table 1.

The components of the co-crystal are linked into a supramolecular ring whereby each carboxylic acid group of two 2,2'-(disulfanediyl)dibenzoic acid molecules form an O—H···N hydrogen bond with a pyridine-N of two N,N'-bis(4-pyridylmethyl)ethanedithioamide molecules, Fig. 3 and Table 1. The ring has a extended chair conformation as seen from the view in Fig. 4. Chairs stack to form a supramolecular chain with the main connections between the tetrameric aggregates being amide-N3—H···O3-carbonyl hydrogen bonds, Figs 5 & 6 and Table 1.

Experimental

Equimolar amounts of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Fluka) and N,N'-bis(4-pyridylmethyl)ethanedithioamide were dissolved in an 1:1 ethanol/chloroform mixture. Crystals were harvested after a few days of slow evaporation.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95–0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O– and N-bound H-atoms were located in a difference Fourier map and were refined with distance restraints of O–H 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = yUeq(carrier atom); y = 1.5 for O and y = 1.2 for N. In the final refinement a low angle reflection evidently effected by the beam stop was omitted, i.e. (1 1 0).

Figures

Fig. 1.
Molecular structure of 2-[(2-carboxyphenyl)disulfanyl]benzoic acid found in the co-crystal of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
Molecular structure of N,N'-bis(4-pyridylmethyl)ethanedithioamide found in the co-crystal of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 3.
Supramolecular ring in (I). The O—H···N hydrogen bonds are shown as orange dashed lines.
Fig. 4.
Supramolecular ring in (I) viewed side-on to emphasize the chair-like conformation. The O—H···N hydrogen bonds are shown as orange dashed lines.
Fig. 5.
View of the supramolecular chain along the b axis in (I). The O—H···N hydrogen bonds are shown as orange dashed lines. Every second tetrameric aggregate is shown in orange. The N—H···O hydrogen ...
Fig. 6.
Side-on view of the supramolecular chain along the b axis in (I). The O—H···N and N—H···O hydrogen bonds are shown as orange and green dashed lines, respectively. Every second tetrameric ...

Crystal data

C14H14N4S2·C14H10O4S2F(000) = 1264
Mr = 608.75Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 11634 reflections
a = 18.502 (5) Åθ = 2.2–40.8°
b = 10.624 (3) ŵ = 0.39 mm1
c = 15.026 (4) ÅT = 98 K
β = 110.235 (5)°Block, red
V = 2771.3 (13) Å30.38 × 0.26 × 0.10 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer5349 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
graphiteθmax = 27.5°, θmin = 2.3°
ω scansh = −22→24
16758 measured reflectionsk = −13→12
6348 independent reflectionsl = −19→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.13w = 1/[σ2(Fo2) + (0.0595P)2 + 1.5417P] where P = (Fo2 + 2Fc2)/3
6348 reflections(Δ/σ)max = 0.001
373 parametersΔρmax = 0.40 e Å3
4 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.14789 (4)1.09050 (7)0.26162 (6)0.0419 (2)
S20.38384 (5)1.05034 (10)0.43964 (7)0.0577 (3)
S30.28281 (4)0.41538 (6)0.47637 (5)0.03595 (18)
S40.23818 (4)0.28425 (6)0.54351 (5)0.03659 (18)
O10.36687 (12)0.57687 (19)0.40613 (16)0.0439 (5)
O20.45371 (13)0.7063 (3)0.50168 (18)0.0542 (6)
H1o0.469 (2)0.707 (4)0.455 (2)0.081*
O30.18572 (13)0.1116 (2)0.63693 (18)0.0487 (5)
O40.06256 (14)0.06603 (19)0.61426 (18)0.0482 (6)
H2o0.0915 (19)0.016 (3)0.655 (2)0.072*
N10.10469 (15)0.6043 (2)0.23918 (19)0.0389 (6)
N20.22644 (15)0.9846 (3)0.42551 (19)0.0445 (6)
H1n0.2727 (10)0.978 (3)0.4689 (19)0.053*
N30.30049 (14)1.2123 (2)0.3103 (2)0.0401 (6)
H2n0.2547 (10)1.233 (3)0.271 (2)0.048*
N40.48896 (14)1.2348 (3)0.12994 (19)0.0439 (6)
C10.13990 (17)0.8058 (3)0.3642 (2)0.0363 (6)
C20.19777 (17)0.7309 (3)0.3524 (2)0.0389 (6)
H20.25040.74830.38720.047*
C30.17793 (17)0.6311 (3)0.2896 (2)0.0376 (6)
H30.21760.58010.28200.045*
C40.04915 (17)0.6752 (3)0.2516 (2)0.0389 (6)
H4−0.00300.65540.21630.047*
C50.06427 (16)0.7753 (3)0.3131 (2)0.0367 (6)
H50.02330.82300.32050.044*
C60.16015 (19)0.9164 (3)0.4317 (2)0.0465 (7)
H6A0.11550.97400.41640.056*
H6B0.17170.88580.49740.056*
C70.22516 (16)1.0588 (3)0.3541 (2)0.0365 (6)
C80.30383 (17)1.1141 (3)0.3643 (2)0.0395 (7)
C90.36528 (19)1.2963 (3)0.3191 (3)0.0514 (9)
H9A0.40251.29030.38470.062*
H9B0.34591.38390.30930.062*
C100.40742 (17)1.2706 (3)0.2513 (2)0.0414 (7)
C110.43798 (18)1.3709 (3)0.2185 (3)0.0476 (7)
H110.43061.45430.23650.057*
C120.47942 (19)1.3496 (3)0.1591 (3)0.0509 (8)
H120.50181.41920.13850.061*
C130.45899 (17)1.1392 (3)0.1596 (2)0.0447 (7)
H130.46571.05720.13840.054*
C140.41768 (18)1.1519 (3)0.2208 (3)0.0470 (7)
H140.39691.08020.24110.056*
C150.35166 (15)0.6427 (2)0.5491 (2)0.0336 (6)
C160.29850 (16)0.5498 (2)0.5523 (2)0.0337 (6)
C170.25988 (17)0.5629 (3)0.6169 (2)0.0384 (6)
H170.22350.50110.61930.046*
C180.27440 (19)0.6650 (3)0.6771 (2)0.0460 (7)
H180.24730.67280.72030.055*
C190.32744 (19)0.7565 (3)0.6763 (3)0.0482 (8)
H190.33730.82590.71870.058*
C200.36576 (17)0.7446 (3)0.6123 (2)0.0407 (7)
H200.40240.80670.61120.049*
C210.39214 (16)0.6382 (3)0.4790 (2)0.0352 (6)
C220.13608 (16)0.3115 (3)0.4988 (2)0.0346 (6)
C230.08651 (17)0.2328 (2)0.5271 (2)0.0351 (6)
C240.00720 (18)0.2556 (3)0.4900 (2)0.0418 (7)
H24−0.02660.20190.50780.050*
C25−0.02326 (18)0.3530 (3)0.4287 (2)0.0450 (7)
H25−0.07730.36690.40470.054*
C260.02518 (19)0.4301 (3)0.4026 (2)0.0466 (7)
H260.00460.49870.36100.056*
C270.10406 (17)0.4090 (3)0.4363 (2)0.0415 (7)
H270.13670.46220.41610.050*
C280.11699 (17)0.1310 (3)0.5979 (2)0.0369 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0356 (4)0.0497 (4)0.0434 (5)−0.0029 (3)0.0175 (3)0.0003 (3)
S20.0405 (4)0.0839 (6)0.0467 (5)−0.0025 (4)0.0127 (4)−0.0042 (5)
S30.0454 (4)0.0380 (4)0.0333 (4)−0.0046 (3)0.0250 (3)−0.0045 (3)
S40.0435 (4)0.0368 (3)0.0357 (4)−0.0001 (3)0.0215 (3)0.0020 (3)
O10.0499 (12)0.0498 (12)0.0446 (13)−0.0110 (9)0.0321 (11)−0.0096 (10)
O20.0440 (12)0.0843 (16)0.0417 (14)−0.0211 (11)0.0244 (11)−0.0103 (13)
O30.0585 (14)0.0433 (11)0.0520 (14)0.0064 (10)0.0292 (12)0.0153 (10)
O40.0566 (14)0.0402 (11)0.0561 (15)−0.0004 (10)0.0300 (12)0.0117 (10)
N10.0505 (14)0.0356 (12)0.0407 (14)−0.0035 (10)0.0285 (12)−0.0009 (10)
N20.0473 (14)0.0528 (15)0.0324 (14)−0.0135 (12)0.0125 (12)−0.0055 (12)
N30.0408 (13)0.0452 (13)0.0427 (15)−0.0110 (11)0.0253 (12)−0.0135 (11)
N40.0355 (12)0.0631 (16)0.0361 (15)0.0073 (11)0.0160 (11)0.0018 (12)
C10.0486 (16)0.0363 (13)0.0296 (15)−0.0040 (12)0.0205 (13)0.0023 (11)
C20.0376 (14)0.0440 (15)0.0368 (17)0.0005 (12)0.0152 (13)0.0100 (12)
C30.0442 (15)0.0341 (13)0.0431 (17)0.0045 (11)0.0262 (14)0.0100 (12)
C40.0417 (15)0.0393 (14)0.0399 (17)−0.0047 (12)0.0197 (13)−0.0018 (12)
C50.0422 (15)0.0372 (13)0.0379 (16)−0.0005 (11)0.0231 (13)−0.0007 (12)
C60.0573 (19)0.0523 (17)0.0356 (17)−0.0154 (15)0.0231 (15)−0.0088 (14)
C70.0423 (15)0.0377 (14)0.0346 (16)−0.0074 (11)0.0200 (13)−0.0092 (12)
C80.0415 (15)0.0451 (15)0.0371 (16)−0.0088 (12)0.0202 (13)−0.0160 (13)
C90.0545 (19)0.0558 (18)0.058 (2)−0.0189 (15)0.0367 (18)−0.0220 (16)
C100.0378 (15)0.0480 (16)0.0438 (18)−0.0066 (12)0.0210 (14)−0.0065 (13)
C110.0480 (17)0.0491 (17)0.051 (2)0.0005 (14)0.0241 (16)−0.0003 (15)
C120.0492 (18)0.0589 (19)0.052 (2)0.0012 (15)0.0273 (17)0.0020 (16)
C130.0417 (16)0.0509 (17)0.0427 (18)0.0026 (13)0.0160 (14)−0.0075 (14)
C140.0492 (17)0.0469 (16)0.051 (2)−0.0080 (13)0.0248 (16)−0.0093 (14)
C150.0333 (13)0.0394 (14)0.0313 (15)−0.0002 (11)0.0154 (12)−0.0004 (11)
C160.0378 (14)0.0370 (13)0.0300 (15)0.0011 (11)0.0165 (12)−0.0008 (11)
C170.0444 (15)0.0408 (14)0.0382 (17)−0.0022 (12)0.0246 (14)−0.0037 (12)
C180.0568 (18)0.0523 (17)0.0413 (18)−0.0017 (14)0.0326 (16)−0.0079 (14)
C190.0574 (19)0.0482 (17)0.0459 (19)−0.0053 (14)0.0267 (16)−0.0164 (14)
C200.0425 (15)0.0432 (15)0.0402 (17)−0.0062 (12)0.0190 (14)−0.0060 (13)
C210.0363 (14)0.0389 (14)0.0347 (16)0.0012 (11)0.0178 (12)0.0008 (12)
C220.0418 (14)0.0375 (13)0.0291 (15)−0.0049 (11)0.0182 (12)−0.0040 (11)
C230.0470 (15)0.0350 (13)0.0279 (14)−0.0040 (11)0.0187 (12)−0.0023 (11)
C240.0481 (16)0.0431 (15)0.0391 (17)−0.0109 (13)0.0213 (14)−0.0024 (13)
C250.0416 (16)0.0552 (18)0.0354 (17)−0.0042 (13)0.0099 (14)0.0021 (14)
C260.0497 (17)0.0499 (17)0.0370 (18)−0.0036 (14)0.0108 (14)0.0088 (13)
C270.0449 (16)0.0456 (16)0.0359 (17)−0.0068 (13)0.0166 (14)0.0065 (13)
C280.0494 (17)0.0323 (13)0.0373 (16)−0.0010 (12)0.0255 (14)−0.0020 (11)

Geometric parameters (Å, °)

S1—C71.648 (3)C9—C101.506 (4)
S2—C81.665 (3)C9—H9A0.9900
S3—C161.788 (3)C9—H9B0.9900
S3—S42.0535 (10)C10—C111.375 (4)
S4—C221.796 (3)C10—C141.378 (4)
O1—C211.219 (4)C11—C121.381 (4)
O2—C211.292 (3)C11—H110.9500
O2—H1o0.84 (3)C12—H120.9500
O3—C281.220 (4)C13—C141.390 (4)
O4—C281.312 (3)C13—H130.9500
O4—H2o0.85 (3)C14—H140.9500
N1—C31.334 (4)C15—C201.404 (4)
N1—C41.338 (4)C15—C161.406 (4)
N2—C71.325 (4)C15—C211.490 (4)
N2—C61.455 (4)C16—C171.397 (4)
N2—H1n0.88 (3)C17—C181.379 (4)
N3—C81.310 (4)C17—H170.9500
N3—C91.464 (4)C18—C191.384 (4)
N3—H2n0.88 (3)C18—H180.9500
N4—C131.308 (4)C19—C201.384 (4)
N4—C121.329 (4)C19—H190.9500
C1—C51.382 (4)C20—H200.9500
C1—C21.394 (4)C22—C271.386 (4)
C1—C61.512 (4)C22—C231.411 (4)
C2—C31.382 (4)C23—C241.399 (4)
C2—H20.9500C23—C281.485 (4)
C3—H30.9500C24—C251.371 (4)
C4—C51.373 (4)C24—H240.9500
C4—H40.9500C25—C261.367 (4)
C5—H50.9500C25—H250.9500
C6—H6A0.9900C26—C271.388 (4)
C6—H6B0.9900C26—H260.9500
C7—C81.527 (4)C27—H270.9500
C16—S3—S4103.44 (10)N4—C12—C11122.0 (3)
C22—S4—S3104.86 (10)N4—C12—H12119.0
C21—O2—H1O108 (3)C11—C12—H12119.0
C28—O4—H2O98 (3)N4—C13—C14123.0 (3)
C3—N1—C4118.6 (3)N4—C13—H13118.5
C7—N2—C6124.7 (3)C14—C13—H13118.5
C7—N2—H1N113 (2)C10—C14—C13118.7 (3)
C6—N2—H1N122 (2)C10—C14—H14120.6
C8—N3—C9124.6 (3)C13—C14—H14120.6
C8—N3—H2N117 (2)C20—C15—C16119.1 (3)
C9—N3—H2N118 (2)C20—C15—C21118.8 (2)
C13—N4—C12118.7 (3)C16—C15—C21122.0 (2)
C5—C1—C2118.1 (3)C17—C16—C15119.1 (3)
C5—C1—C6121.5 (3)C17—C16—S3120.9 (2)
C2—C1—C6120.4 (3)C15—C16—S3120.0 (2)
C3—C2—C1119.4 (3)C18—C17—C16120.3 (3)
C3—C2—H2120.3C18—C17—H17119.9
C1—C2—H2120.3C16—C17—H17119.9
N1—C3—C2121.9 (3)C17—C18—C19121.6 (3)
N1—C3—H3119.0C17—C18—H18119.2
C2—C3—H3119.0C19—C18—H18119.2
N1—C4—C5122.9 (3)C20—C19—C18118.5 (3)
N1—C4—H4118.6C20—C19—H19120.7
C5—C4—H4118.6C18—C19—H19120.7
C4—C5—C1119.1 (3)C19—C20—C15121.4 (3)
C4—C5—H5120.4C19—C20—H20119.3
C1—C5—H5120.4C15—C20—H20119.3
N2—C6—C1111.3 (2)O1—C21—O2124.4 (3)
N2—C6—H6A109.4O1—C21—C15121.5 (3)
C1—C6—H6A109.4O2—C21—C15114.1 (3)
N2—C6—H6B109.4C27—C22—C23118.5 (3)
C1—C6—H6B109.4C27—C22—S4121.5 (2)
H6A—C6—H6B108.0C23—C22—S4120.1 (2)
N2—C7—C8113.5 (3)C24—C23—C22118.6 (3)
N2—C7—S1124.9 (2)C24—C23—C28119.9 (2)
C8—C7—S1121.6 (2)C22—C23—C28121.5 (3)
N3—C8—C7113.9 (3)C25—C24—C23122.0 (3)
N3—C8—S2125.8 (2)C25—C24—H24119.0
C7—C8—S2120.3 (2)C23—C24—H24119.0
N3—C9—C10115.3 (3)C26—C25—C24119.1 (3)
N3—C9—H9A108.4C26—C25—H25120.4
C10—C9—H9A108.4C24—C25—H25120.4
N3—C9—H9B108.4C25—C26—C27120.7 (3)
C10—C9—H9B108.4C25—C26—H26119.7
H9A—C9—H9B107.5C27—C26—H26119.7
C11—C10—C14117.9 (3)C22—C27—C26121.1 (3)
C11—C10—C9118.4 (3)C22—C27—H27119.4
C14—C10—C9123.7 (3)C26—C27—H27119.4
C10—C11—C12119.6 (3)O3—C28—O4124.2 (3)
C10—C11—H11120.2O3—C28—C23122.8 (3)
C12—C11—H11120.2O4—C28—C23113.0 (3)
C16—S3—S4—C2288.06 (13)C20—C15—C16—S3−177.1 (2)
C5—C1—C2—C31.1 (4)C21—C15—C16—S34.5 (4)
C6—C1—C2—C3−179.4 (3)S4—S3—C16—C17−20.3 (3)
C4—N1—C3—C2−1.3 (4)S4—S3—C16—C15158.2 (2)
C1—C2—C3—N10.3 (4)C15—C16—C17—C18−0.6 (4)
C3—N1—C4—C50.8 (4)S3—C16—C17—C18177.9 (2)
N1—C4—C5—C10.6 (4)C16—C17—C18—C19−0.5 (5)
C2—C1—C5—C4−1.5 (4)C17—C18—C19—C200.7 (5)
C6—C1—C5—C4178.9 (3)C18—C19—C20—C150.1 (5)
C7—N2—C6—C173.4 (4)C16—C15—C20—C19−1.2 (5)
C5—C1—C6—N2−139.7 (3)C21—C15—C20—C19177.3 (3)
C2—C1—C6—N240.8 (4)C20—C15—C21—O1−157.7 (3)
C6—N2—C7—C8−177.5 (3)C16—C15—C21—O120.7 (4)
C6—N2—C7—S12.1 (4)C20—C15—C21—O220.7 (4)
C9—N3—C8—C7168.0 (2)C16—C15—C21—O2−160.9 (3)
C9—N3—C8—S2−11.6 (4)S3—S4—C22—C27−3.0 (3)
N2—C7—C8—N3−162.1 (3)S3—S4—C22—C23177.0 (2)
S1—C7—C8—N318.3 (3)C27—C22—C23—C240.8 (4)
N2—C7—C8—S217.4 (3)S4—C22—C23—C24−179.2 (2)
S1—C7—C8—S2−162.20 (17)C27—C22—C23—C28−176.5 (3)
C8—N3—C9—C1098.3 (4)S4—C22—C23—C283.5 (4)
N3—C9—C10—C11146.4 (3)C22—C23—C24—C25−1.2 (4)
N3—C9—C10—C14−34.1 (5)C28—C23—C24—C25176.1 (3)
C14—C10—C11—C12−2.0 (5)C23—C24—C25—C260.3 (5)
C9—C10—C11—C12177.6 (3)C24—C25—C26—C271.1 (5)
C13—N4—C12—C11−1.0 (5)C23—C22—C27—C260.6 (5)
C10—C11—C12—N42.1 (5)S4—C22—C27—C26−179.5 (3)
C12—N4—C13—C14−0.2 (5)C25—C26—C27—C22−1.5 (5)
C11—C10—C14—C130.8 (5)C24—C23—C28—O3−175.5 (3)
C9—C10—C14—C13−178.7 (3)C22—C23—C28—O31.7 (4)
N4—C13—C14—C100.3 (5)C24—C23—C28—O43.9 (4)
C20—C15—C16—C171.4 (4)C22—C23—C28—O4−178.8 (3)
C21—C15—C16—C17−177.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1o···N4i0.84 (3)1.73 (3)2.565 (4)168 (4)
O4—H2o···N1ii0.85 (3)1.76 (3)2.529 (3)151 (4)
N2—H1n···S20.88 (2)2.37 (2)2.930 (3)121 (2)
N3—H2n···O3iii0.88 (3)2.58 (3)3.312 (4)142 (2)
N3—H2n···S10.88 (3)2.45 (3)2.959 (3)117 (2)

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2714).

References

  • Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2117. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Broker, G. A. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o705. [PMC free article] [PubMed]
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography