PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2605.
Published online 2010 September 25. doi:  10.1107/S1600536810033878
PMCID: PMC2983265

N-[2-(2-Chloro­phen­yl)-2-hy­droxy­eth­yl]propan-2-aminium 4-methyl­benzoate

Abstract

The title compound, C11H17ClNO+·C8H7O2 , was obtained by the reaction of chlorprenaline {or 1-(2-chloro­phen­yl)-2-[(1-methyl­eth­yl)amino]­ethanol} and p-toluic acid. The chlorpren­aline is twisted moderately with a C—C—C—C torsion angle of 109.6 (2)°. The two mol­ecules are linked by classical O—H(...)O and N—H(...)O hydrogen bonds. Further N—H(...)O hydrogen bonds link two of these units into dimers.

Related literature

For related structures, see: Feng et al. (2010 [triangle]); Takwale & Pant (1971 [triangle]); Tang et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2605-scheme1.jpg

Experimental

Crystal data

  • C11H17ClNO+·C8H7O2
  • M r = 349.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2605-efi1.jpg
  • a = 8.5966 (4) Å
  • b = 8.1288 (3) Å
  • c = 26.8949 (12) Å
  • β = 91.600 (1)°
  • V = 1878.68 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 296 K
  • 0.37 × 0.30 × 0.22 mm

Data collection

  • Rigaku R-AXIS RAPID/ZJUG CCD diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.913, T max = 0.953
  • 27924 measured reflections
  • 4271 independent reflections
  • 2763 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.125
  • S = 1.00
  • 4271 reflections
  • 222 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810033878/rk2225sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033878/rk2225Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Zhejiang Provincial Natural Science Foundation of China (grant No. Y206174).

supplementary crystallographic information

Comment

A recent study reports the structure of bis{N-[2-(2-chlorophenyl)-2-hydroxyethyl]propan-2-aminium} oxalate (Tang et al., 2009b), which was synthesized by oxalic acid and chlorprenaline (Tang et al., 2009a). Here using p-toluic acid instead of oxalic acid and following a similar synthetic procedure yields the title compound, I.

In I, the chlorprenaline molecule and the p-toluic molecule are linked to each other by the classical N1—H103···O2 hydogen bond [2.7835 (18)Å] and the O1—H101···O3 hydogen bond [2.6986 (18)Å] (Fig. 1 & Table 1). The chlorprenaline in I are twisted moderately as compared with those of other compounds. The C7—C2—C1—C8 torsion angle of 109.6 (2)° is larger than the value of the similar torsion angle of 91.9 (2)° (Tang et al., 2009a). The C12–O2 distance of 1.248 (2)Å is much shorter than the similar distance of 1.292 (8)Å (Takwale & Pant, 1971). The C9–N1 distance of 1.507 (2)Å is longer than the value of the similar bond distance of 1.473 (4)Å (Tang et al., 2009b), as similar as the value of the similar bond distance of 1.503 (2)Å (Feng et al., 2010).

Classical O—H···O and N—H···O hydrogen bonds are found in the cystal structure (Fig. 2) are essential forces in crystal formation.

Experimental

Racemic chlorprenaline was prepared by chlorprenaline hydrochloride purchased from ShangHai Shengxin Medicine & Chemical Co., Ltd. ShangHai, China. Chlorprenaline hydrochloride and NaOH in a molar ratio of 1:1 were mixed and dissolved in a methanol–water solution (1:1 v/v). The precipitate formed was filtered off, washed with water and dried. It was used without further purification. Racemic chlorprenaline (0.5 g, 0.0023 mol) was dissolved in methanol (7 ml) and then p-toluylic acid (0.31 g, 0.0023 mol) was added.The mixture was dissovled by heating to 343 K where a clear solution resulted. The resulting solution was concentrated at ambient temperature. Colourless crystals of title compound separated from the solution in about 70% yield after one day.

Refinement

All of the H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93Å (aromatic), 0.98Å (methine), 0.97Å (methylene), 0.96Å (methyl) 0.82Å (hydroxyl) and 0.90Å (amine), with Uiso(H) = 1.2–1.5 Ueq(parent atom).

Figures

Fig. 1.
The asymmetric unit of I with atom numbering scheme. Displacement ellipsoids are presented at 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The two units of I with atom labels. The dashed lines indicate hydrogen bonds.

Crystal data

C11H17ClNO+·C8H7O2F(000) = 744
Mr = 349.84Dx = 1.237 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 17098 reflections
a = 8.5966 (4) Åθ = 3.0–27.4°
b = 8.1288 (3) ŵ = 0.22 mm1
c = 26.8949 (12) ÅT = 296 K
β = 91.600 (1)°Chunk, colourless
V = 1878.68 (14) Å30.37 × 0.30 × 0.22 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID/ZJUG CCD diffractometer4271 independent reflections
Radiation source: rotate anode2763 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
[var phi] and ω scansh = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −10→9
Tmin = 0.913, Tmax = 0.953l = −34→34
27924 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.125w = 1/[σ2(Fo2) + (0.0502P)2 + 0.6753P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4271 reflectionsΔρmax = 0.21 e Å3
222 parametersΔρmin = −0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0084 (10)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.29951 (9)0.54161 (7)0.65218 (2)0.0833 (2)
O10.27619 (16)0.21200 (19)0.53119 (5)0.0615 (4)
H1010.28030.27540.50760.092*
O20.49211 (17)0.21720 (18)0.43539 (5)0.0619 (4)
N10.62036 (16)0.27020 (17)0.53021 (5)0.0420 (3)
H1020.63830.37830.53480.050*
H1030.56190.25920.50210.050*
C70.2495 (2)0.3348 (2)0.65680 (7)0.0541 (5)
C10.3646 (2)0.2763 (2)0.57188 (6)0.0440 (4)
H10.36780.39660.56960.053*
C20.2854 (2)0.2261 (2)0.61907 (6)0.0459 (4)
C80.5294 (2)0.2082 (2)0.57268 (6)0.0486 (4)
H8A0.58200.23920.60370.058*
H8B0.52520.08910.57130.058*
C90.7739 (2)0.1855 (3)0.52294 (8)0.0571 (5)
H90.75330.07260.51180.068*
C40.1703 (3)0.0101 (3)0.66772 (10)0.0788 (7)
H40.1439−0.10010.67140.095*
C60.1758 (3)0.2841 (3)0.69932 (8)0.0749 (7)
H60.15400.35920.72430.090*
C100.8567 (3)0.2759 (3)0.48204 (9)0.0744 (6)
H10A0.79010.28100.45280.112*
H10B0.95070.21860.47450.112*
H10C0.88170.38550.49300.112*
C30.2444 (2)0.0620 (3)0.62573 (8)0.0607 (5)
H30.2677−0.01430.60130.073*
C110.8699 (3)0.1785 (4)0.57050 (10)0.0913 (8)
H11A0.88040.28730.58410.137*
H11B0.97110.13530.56380.137*
H11C0.81960.10860.59390.137*
C50.1353 (3)0.1218 (3)0.70422 (9)0.0830 (8)
H50.08400.08710.73230.100*
O30.30804 (17)0.40215 (16)0.44986 (5)0.0589 (4)
C130.3104 (2)0.2771 (2)0.37008 (6)0.0439 (4)
C120.3761 (2)0.3002 (2)0.42202 (6)0.0467 (4)
C140.3905 (2)0.1855 (2)0.33582 (7)0.0547 (5)
H140.48420.13600.34530.066*
C180.1687 (2)0.3448 (2)0.35524 (7)0.0529 (5)
H180.11170.40520.37780.064*
C160.1925 (2)0.2349 (3)0.27234 (7)0.0578 (5)
C150.3330 (3)0.1666 (3)0.28760 (7)0.0609 (5)
H150.39010.10670.26500.073*
C170.1113 (2)0.3231 (3)0.30701 (7)0.0607 (5)
H170.01570.36900.29780.073*
C190.1321 (4)0.2139 (4)0.21933 (9)0.0890 (8)
H19A0.20180.26670.19710.133*
H19B0.03080.26290.21580.133*
H19C0.12540.09890.21150.133*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1200 (5)0.0570 (3)0.0746 (4)−0.0060 (3)0.0327 (3)−0.0103 (3)
O10.0601 (8)0.0804 (10)0.0435 (7)−0.0112 (7)−0.0052 (6)0.0058 (7)
O20.0651 (9)0.0754 (9)0.0446 (7)0.0106 (7)−0.0091 (6)−0.0056 (7)
N10.0427 (8)0.0434 (8)0.0400 (7)0.0015 (6)0.0020 (6)−0.0029 (6)
C70.0561 (11)0.0568 (11)0.0498 (10)0.0044 (9)0.0102 (8)0.0035 (9)
C10.0488 (10)0.0454 (9)0.0378 (8)0.0003 (7)0.0026 (7)0.0009 (7)
C20.0460 (10)0.0515 (10)0.0404 (9)0.0035 (8)0.0026 (7)0.0067 (8)
C80.0497 (10)0.0523 (10)0.0440 (9)0.0024 (8)0.0034 (8)0.0064 (8)
C90.0487 (11)0.0585 (12)0.0643 (12)0.0116 (9)0.0063 (9)−0.0040 (9)
C40.0927 (17)0.0631 (14)0.0818 (16)−0.0038 (12)0.0234 (13)0.0242 (12)
C60.0881 (17)0.0820 (16)0.0561 (12)0.0105 (13)0.0285 (12)0.0043 (11)
C100.0552 (13)0.0929 (17)0.0761 (15)0.0067 (12)0.0194 (11)−0.0026 (13)
C30.0708 (13)0.0549 (12)0.0570 (12)−0.0008 (10)0.0103 (10)0.0072 (9)
C110.0580 (14)0.131 (2)0.0845 (17)0.0235 (15)−0.0098 (12)0.0098 (16)
C50.0928 (18)0.0889 (18)0.0691 (15)0.0057 (14)0.0357 (13)0.0274 (13)
O30.0889 (10)0.0460 (7)0.0420 (7)0.0038 (7)0.0029 (6)−0.0067 (6)
C130.0538 (10)0.0406 (9)0.0375 (8)−0.0040 (7)0.0015 (7)0.0012 (7)
C120.0616 (11)0.0399 (9)0.0388 (9)−0.0050 (8)0.0023 (8)−0.0008 (7)
C140.0567 (11)0.0613 (12)0.0460 (10)0.0066 (9)−0.0016 (8)−0.0078 (9)
C180.0578 (12)0.0537 (11)0.0475 (10)0.0037 (9)0.0053 (8)0.0015 (8)
C160.0710 (13)0.0594 (12)0.0426 (10)−0.0094 (10)−0.0061 (9)0.0016 (9)
C150.0716 (14)0.0698 (13)0.0414 (10)0.0016 (11)0.0039 (9)−0.0116 (9)
C170.0597 (12)0.0664 (13)0.0555 (11)0.0027 (10)−0.0051 (9)0.0076 (10)
C190.114 (2)0.0984 (19)0.0531 (13)−0.0079 (16)−0.0230 (13)−0.0049 (13)

Geometric parameters (Å, °)

Cl1—C71.741 (2)C10—H10A0.9600
O1—C11.415 (2)C10—H10B0.9600
O1—H1010.8200C10—H10C0.9600
O2—C121.248 (2)C3—H30.9300
N1—C81.490 (2)C11—H11A0.9600
N1—C91.507 (2)C11—H11B0.9600
N1—H1020.9000C11—H11C0.9600
N1—H1030.9000C5—H50.9300
C7—C61.386 (3)O3—C121.271 (2)
C7—C21.387 (3)C13—C141.383 (2)
C1—C21.513 (2)C13—C181.386 (3)
C1—C81.521 (2)C13—C121.504 (2)
C1—H10.9800C14—C151.384 (3)
C2—C31.392 (3)C14—H140.9300
C8—H8A0.9700C18—C171.386 (3)
C8—H8B0.9700C18—H180.9300
C9—C111.504 (3)C16—C171.381 (3)
C9—C101.517 (3)C16—C151.382 (3)
C9—H90.9800C16—C191.513 (3)
C4—C51.376 (4)C15—H150.9300
C4—C31.379 (3)C17—H170.9300
C4—H40.9300C19—H19A0.9600
C6—C51.371 (4)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C1—O1—H101109.5H10A—C10—H10C109.5
C8—N1—C9115.19 (14)H10B—C10—H10C109.5
C8—N1—H102108.5C4—C3—C2121.5 (2)
C9—N1—H102108.5C4—C3—H3119.2
C8—N1—H103108.5C2—C3—H3119.2
C9—N1—H103108.5C9—C11—H11A109.5
H102—N1—H103107.5C9—C11—H11B109.5
C6—C7—C2122.1 (2)H11A—C11—H11B109.5
C6—C7—Cl1117.75 (17)C9—C11—H11C109.5
C2—C7—Cl1120.19 (14)H11A—C11—H11C109.5
O1—C1—C2107.74 (14)H11B—C11—H11C109.5
O1—C1—C8110.88 (15)C6—C5—C4120.3 (2)
C2—C1—C8109.32 (14)C6—C5—H5119.8
O1—C1—H1109.6C4—C5—H5119.8
C2—C1—H1109.6C14—C13—C18118.17 (16)
C8—C1—H1109.6C14—C13—C12120.33 (16)
C7—C2—C3117.01 (17)C18—C13—C12121.50 (16)
C7—C2—C1123.81 (17)O2—C12—O3124.06 (16)
C3—C2—C1119.18 (17)O2—C12—C13118.45 (16)
N1—C8—C1112.01 (14)O3—C12—C13117.49 (16)
N1—C8—H8A109.2C13—C14—C15120.84 (18)
C1—C8—H8A109.2C13—C14—H14119.6
N1—C8—H8B109.2C15—C14—H14119.6
C1—C8—H8B109.2C13—C18—C17120.41 (18)
H8A—C8—H8B107.9C13—C18—H18119.8
C11—C9—N1111.64 (17)C17—C18—H18119.8
C11—C9—C10112.2 (2)C17—C16—C15117.54 (17)
N1—C9—C10107.65 (16)C17—C16—C19121.9 (2)
C11—C9—H9108.4C15—C16—C19120.6 (2)
N1—C9—H9108.4C16—C15—C14121.36 (19)
C10—C9—H9108.4C16—C15—H15119.3
C5—C4—C3119.8 (2)C14—C15—H15119.3
C5—C4—H4120.1C16—C17—C18121.64 (19)
C3—C4—H4120.1C16—C17—H17119.2
C5—C6—C7119.2 (2)C18—C17—H17119.2
C5—C6—H6120.4C16—C19—H19A109.5
C7—C6—H6120.4C16—C19—H19B109.5
C9—C10—H10A109.5H19A—C19—H19B109.5
C9—C10—H10B109.5C16—C19—H19C109.5
H10A—C10—H10B109.5H19A—C19—H19C109.5
C9—C10—H10C109.5H19B—C19—H19C109.5
C6—C7—C2—C3−0.2 (3)C1—C2—C3—C4−179.13 (19)
Cl1—C7—C2—C3178.83 (15)C7—C6—C5—C41.2 (4)
C6—C7—C2—C1179.50 (19)C3—C4—C5—C6−0.9 (4)
Cl1—C7—C2—C1−1.4 (3)C14—C13—C12—O2−9.8 (3)
O1—C1—C2—C7−129.79 (18)C18—C13—C12—O2169.70 (18)
C8—C1—C2—C7109.6 (2)C14—C13—C12—O3171.21 (17)
O1—C1—C2—C349.9 (2)C18—C13—C12—O3−9.3 (3)
C8—C1—C2—C3−70.6 (2)C18—C13—C14—C152.1 (3)
C9—N1—C8—C1−169.34 (15)C12—C13—C14—C15−178.45 (18)
O1—C1—C8—N168.35 (19)C14—C13—C18—C17−1.1 (3)
C2—C1—C8—N1−173.02 (14)C12—C13—C18—C17179.36 (17)
C8—N1—C9—C11−50.6 (2)C17—C16—C15—C140.0 (3)
C8—N1—C9—C10−174.10 (16)C19—C16—C15—C14179.6 (2)
C2—C7—C6—C5−0.7 (4)C13—C14—C15—C16−1.5 (3)
Cl1—C7—C6—C5−179.8 (2)C15—C16—C17—C180.9 (3)
C5—C4—C3—C2−0.1 (4)C19—C16—C17—C18−178.6 (2)
C7—C2—C3—C40.6 (3)C13—C18—C17—C16−0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H101···O30.821.882.6986 (18)173
N1—H103···O20.901.912.7835 (18)164
N1—H102···O3i0.901.892.7824 (19)174

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2225).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Feng, H., Tang, Z., Xie, L.-J. & Xing, B.-T. (2010). Acta Cryst. E66, o391. [PMC free article] [PubMed]
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2006). PROCESS-AUTO Rigaku/MSC, The Woodlands, Texas, USA.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Takwale, M. G. & Pant, L. M. (1971). Acta Cryst. B27, 1152–1158.
  • Tang, Z., Xu, M., Zhang, H.-C. & Feng, H. (2009b). Acta Cryst. E65, o1670. [PMC free article] [PubMed]
  • Tang, Z., Xu, M., Zheng, G.-R. & Feng, H. (2009a). Acta Cryst. E65, o1501. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography