PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2545.
Published online 2010 September 11. doi:  10.1107/S160053681003549X
PMCID: PMC2983262

Eth­oxy­carbonyl­methyl 3-(4-chloro­benzyl­idene)dithio­carbazate

Abstract

Mol­ecules of the title compound, C12H13ClN2O2S2, are linked into centrosymmetric dimers by pairs of inter­molecular N—H(...)S hydrogen bonds. In the crystal structure, there are π–π stacking inter­actions between symmetry-related benzene rings with a centroid–centroid distance of 3.7305 (13) Å, a perpendicular distance between the planes of 3.2851 (9) Å and a slippage of 1.768 Å. The structure is further stabilized by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the biological activity of related compounds, see: Gülerman et al. (2001 [triangle]); Duran et al. (2002 [triangle]). For related structures, see: Tabatabaee et al. (2006 [triangle], 2007 [triangle], 2008 [triangle], 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2545-scheme1.jpg

Experimental

Crystal data

  • C12H13ClN2O2S2
  • M r = 316.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2545-efi1.jpg
  • a = 7.3425 (3) Å
  • b = 10.3894 (4) Å
  • c = 10.6457 (5) Å
  • α = 116.535 (2)°
  • β = 95.049 (2)°
  • γ = 94.955 (2)°
  • V = 716.50 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.56 mm−1
  • T = 173 K
  • 0.12 × 0.08 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer with APEXII CCD
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.936, T max = 0.967
  • 12341 measured reflections
  • 3996 independent reflections
  • 3361 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.104
  • S = 1.09
  • 3996 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003549X/lh5124sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003549X/lh5124Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to Scientific Society of Nanotechnology, Islamic Azad University, Yazd Branch, for support of this work.

supplementary crystallographic information

Comment

Thiones of nitrogen-containing heterocycles have attracted the attention of researchers in recent years because of their synthetic possibilities and useful properties. Several compounds containing sulfur and nitrogen atoms are anti-inflammatory, sedative, antibacterial, antiviral, or antitumor and synthesis of the corresponding iminic compounds could be of interest from the viewpoint of chemical reactivity and biological activity (Gülerman et al., 2001; Duran et al., 2002). In a sequence of studies, we have investigated the synthesis and crystal structures of several Schiff bases derived from 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione (AMTT) and 4-amino-6-methyl-3-thio-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) (Tabatabaee et al., 2006; 2007; 2008; 2009). Here, we report our results for the synthesis and crystal structure of a new iminic compounds derived from N-aminorhodanine, (I).

In the title molecule (Fig. 1) bond distances and angles are unexceptional and agree with the corresponding bond distances and angles reported in the related compounds (Tabatabaee et al., 2006; 2007; 2008; 2009). In the solid state, intermolecular N—H···S hydrogen bonds in the title compound link the molecules lying about inversion centers leading to centrosymmetric dimers (Tab. 1 & Fig. 2). Moreover, the benzene rings C1–C6 and C1i–C6i (i= 2 - x, 1 - y, 1 - z) show π-π stacking interactions (Fig. 3) with centroid-centroid distance 3.7305 (13) Å, the angle between the planes 0 °; the perpendicular distance between the planes 3.2851 (9) Å and the slippage 1.768 Å. The structure is further stabilized by intermolecular hydrogen bonding of C—H···O type (Tab. 1); unit cell packing showing hydrogen bonding interactions has been presented in Figure 4.

Experimental

A solution of N-aminorhodanine (5 mmol) in EtOH (20 ml) was treated with 2-chlorobenzaldehyde (5 mmol) and the resulting mixture was acidified with 37% hydrochloric acid (0.2 ml). The reaction mixture was refluxed for 8 h. After completion of the reaction, the solid residue was filtered, washed with cold ethanol (10 ml) and recrystallized from EtOH.

Refinement

The H-atoms were visible in difference Fourier maps but were included in the refinement in geometrically idealized positions with distances N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2 × Ueq of the parent atoms. The final difference map was free of chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Dimeric arrangement of the title compound formed by intermolecular N—H···S hydrogen bonds and shown as dashed lines. S1a is related by the symmetry code (1-x, 2-y, 1-z).
Fig. 3.
Representation of π-π stacking interactions in the crystal structure of the title compound
Fig. 4.
Unit cell packing of the title compound showing hydrogen bonding interactions as dashed lines.

Crystal data

C12H13ClN2O2S2Z = 2
Mr = 316.81F(000) = 328
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3425 (3) ÅCell parameters from 3737 reflections
b = 10.3894 (4) Åθ = 1.0–29.6°
c = 10.6457 (5) ŵ = 0.56 mm1
α = 116.535 (2)°T = 173 K
β = 95.049 (2)°Block, colorless
γ = 94.955 (2)°0.12 × 0.08 × 0.06 mm
V = 716.50 (5) Å3

Data collection

Nonius KappaCCD diffractometer with APEXII CCD3996 independent reflections
Radiation source: fine-focus sealed tube3361 reflections with I > 2σ(I)
graphiteRint = 0.031
ω and [var phi] scansθmax = 29.7°, θmin = 2.2°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −10→10
Tmin = 0.936, Tmax = 0.967k = −14→14
12341 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0252P)2 + 0.6628P] where P = (Fo2 + 2Fc2)/3
3996 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.89852 (9)0.10405 (6)0.44205 (7)0.04491 (16)
S10.37647 (8)0.94428 (5)0.28183 (6)0.03285 (14)
S20.37807 (7)0.61903 (5)0.12742 (5)0.02750 (12)
O1−0.0267 (2)0.65882 (18)0.13349 (16)0.0355 (3)
O2−0.0309 (2)0.76565 (17)−0.00860 (17)0.0348 (3)
N10.5839 (2)0.65588 (17)0.36811 (18)0.0251 (3)
N20.5413 (2)0.78764 (17)0.38235 (17)0.0259 (3)
H2N0.58130.86810.46100.031*
C10.7182 (2)0.5188 (2)0.4706 (2)0.0224 (3)
C20.8110 (3)0.5168 (2)0.5894 (2)0.0260 (4)
H20.83830.60390.67630.031*
C30.8640 (3)0.3890 (2)0.5824 (2)0.0280 (4)
H30.92710.38800.66370.034*
C40.8236 (3)0.2634 (2)0.4555 (2)0.0292 (4)
C50.7266 (3)0.2612 (2)0.3364 (2)0.0306 (4)
H50.69730.17330.25050.037*
C60.6734 (3)0.3889 (2)0.3448 (2)0.0263 (4)
H60.60570.38840.26420.032*
C70.6691 (3)0.6550 (2)0.4777 (2)0.0244 (4)
H70.70050.74280.56360.029*
C80.4379 (3)0.7910 (2)0.2744 (2)0.0238 (4)
C90.2345 (3)0.6622 (2)0.0105 (2)0.0291 (4)
H9A0.29840.74770.00610.035*
H9B0.21720.5795−0.08610.035*
C100.0471 (3)0.6945 (2)0.0554 (2)0.0281 (4)
C11−0.2133 (3)0.8016 (3)0.0258 (3)0.0419 (5)
H11A−0.20920.85710.12980.050*
H11B−0.30240.7118−0.00900.050*
C12−0.2709 (4)0.8910 (3)−0.0444 (3)0.0506 (6)
H12A−0.39510.9147−0.02510.061*
H12B−0.27160.8359−0.14700.061*
H12C−0.18390.9809−0.00710.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0472 (3)0.0344 (3)0.0633 (4)0.0143 (2)0.0028 (3)0.0306 (3)
S10.0483 (3)0.0196 (2)0.0283 (3)0.0074 (2)−0.0043 (2)0.01017 (19)
S20.0359 (3)0.0192 (2)0.0239 (2)0.00528 (18)0.00303 (19)0.00682 (18)
O10.0363 (8)0.0418 (9)0.0338 (8)0.0012 (7)0.0033 (6)0.0230 (7)
O20.0362 (8)0.0390 (8)0.0361 (8)0.0066 (7)0.0033 (6)0.0233 (7)
N10.0275 (8)0.0193 (7)0.0301 (8)0.0055 (6)0.0036 (6)0.0124 (7)
N20.0331 (9)0.0173 (7)0.0253 (8)0.0037 (6)0.0000 (6)0.0087 (6)
C10.0212 (8)0.0232 (8)0.0266 (9)0.0048 (7)0.0044 (7)0.0143 (7)
C20.0254 (9)0.0293 (9)0.0253 (9)0.0058 (7)0.0051 (7)0.0136 (8)
C30.0243 (9)0.0367 (10)0.0311 (10)0.0070 (8)0.0045 (7)0.0219 (9)
C40.0263 (9)0.0290 (10)0.0405 (11)0.0073 (8)0.0071 (8)0.0223 (9)
C50.0365 (11)0.0243 (9)0.0306 (10)0.0066 (8)0.0039 (8)0.0121 (8)
C60.0293 (9)0.0270 (9)0.0251 (9)0.0046 (7)0.0013 (7)0.0144 (8)
C70.0238 (8)0.0215 (8)0.0268 (9)0.0047 (7)0.0048 (7)0.0098 (7)
C80.0274 (9)0.0207 (8)0.0239 (9)0.0030 (7)0.0045 (7)0.0108 (7)
C90.0361 (10)0.0271 (9)0.0215 (9)0.0003 (8)0.0013 (8)0.0098 (8)
C100.0336 (10)0.0238 (9)0.0237 (9)−0.0009 (8)−0.0020 (8)0.0099 (8)
C110.0372 (12)0.0431 (13)0.0504 (14)0.0093 (10)0.0063 (10)0.0252 (12)
C120.0539 (16)0.0440 (14)0.0556 (16)0.0164 (12)0.0016 (13)0.0237 (13)

Geometric parameters (Å, °)

Cl1—C41.739 (2)C3—C41.380 (3)
S1—C81.6618 (19)C3—H30.9500
S2—C81.7548 (19)C4—C51.389 (3)
S2—C91.792 (2)C5—C61.382 (3)
O1—C101.201 (2)C5—H50.9500
O2—C101.339 (2)C6—H60.9500
O2—C111.455 (3)C7—H70.9500
N1—C71.279 (2)C9—C101.513 (3)
N1—N21.375 (2)C9—H9A0.9900
N2—C81.337 (2)C9—H9B0.9900
N2—H2N0.8800C11—C121.493 (3)
C1—C21.392 (2)C11—H11A0.9900
C1—C61.398 (3)C11—H11B0.9900
C1—C71.462 (2)C12—H12A0.9800
C2—C31.388 (3)C12—H12B0.9800
C2—H20.9500C12—H12C0.9800
C8—S2—C9100.82 (9)C1—C7—H7120.1
C10—O2—C11115.16 (17)N2—C8—S1122.37 (14)
C7—N1—N2116.85 (16)N2—C8—S2112.84 (13)
C8—N2—N1118.65 (16)S1—C8—S2124.78 (11)
C8—N2—H2N120.7C10—C9—S2113.36 (14)
N1—N2—H2N120.7C10—C9—H9A108.9
C2—C1—C6119.06 (17)S2—C9—H9A108.9
C2—C1—C7120.29 (17)C10—C9—H9B108.9
C6—C1—C7120.66 (16)S2—C9—H9B108.9
C3—C2—C1120.73 (18)H9A—C9—H9B107.7
C3—C2—H2119.6O1—C10—O2123.7 (2)
C1—C2—H2119.6O1—C10—C9126.00 (19)
C4—C3—C2118.96 (18)O2—C10—C9110.25 (17)
C4—C3—H3120.5O2—C11—C12107.7 (2)
C2—C3—H3120.5O2—C11—H11A110.2
C3—C4—C5121.55 (18)C12—C11—H11A110.2
C3—C4—Cl1119.71 (15)O2—C11—H11B110.2
C5—C4—Cl1118.73 (16)C12—C11—H11B110.2
C6—C5—C4119.01 (19)H11A—C11—H11B108.5
C6—C5—H5120.5C11—C12—H12A109.5
C4—C5—H5120.5C11—C12—H12B109.5
C5—C6—C1120.63 (17)H12A—C12—H12B109.5
C5—C6—H6119.7C11—C12—H12C109.5
C1—C6—H6119.7H12A—C12—H12C109.5
N1—C7—C1119.89 (17)H12B—C12—H12C109.5
N1—C7—H7120.1
C7—N1—N2—C8−174.09 (18)C2—C1—C7—N1−179.95 (18)
C6—C1—C2—C32.1 (3)C6—C1—C7—N10.2 (3)
C7—C1—C2—C3−177.71 (18)N1—N2—C8—S1179.15 (14)
C1—C2—C3—C40.1 (3)N1—N2—C8—S2−1.3 (2)
C2—C3—C4—C5−1.9 (3)C9—S2—C8—N2177.22 (15)
C2—C3—C4—Cl1176.88 (15)C9—S2—C8—S1−3.25 (16)
C3—C4—C5—C61.5 (3)C8—S2—C9—C10−73.08 (15)
Cl1—C4—C5—C6−177.31 (16)C11—O2—C10—O11.6 (3)
C4—C5—C6—C10.8 (3)C11—O2—C10—C9179.48 (17)
C2—C1—C6—C5−2.6 (3)S2—C9—C10—O1−20.3 (3)
C7—C1—C6—C5177.28 (18)S2—C9—C10—O2161.95 (14)
N2—N1—C7—C1179.74 (16)C10—O2—C11—C12175.16 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.882.523.3669 (17)161
C3—H3···O1ii0.952.483.410 (2)166
C9—H9B···O1iii0.992.553.153 (3)119
C9—H9A···S10.992.693.066 (2)103

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5124).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Duran, A., Doğan, H. N. & Rollas, S. (2002). Farmaco, 57, 559–564. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gülerman, N. N., Doğan, H. N., Rollas, S., Johansson, C. & Çelik, C. (2001). Farmaco, 56, 953–958. [PubMed]
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem.635, 120–124.
  • Tabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci.24, x173–x174.
  • Tabatabaee, M., Ghassemzadeh, M., Zarabi, Heravi, M. M., AnaryAbbasinejad, M. & Neumüller, B. (2007). Phosphorus Sulfur Silion Relat. Elem.182, 677–686.
  • Tabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B.61, 1421–1425.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography