PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1338.
Published online 2010 September 30. doi:  10.1107/S1600536810033702
PMCID: PMC2983256

μ-Actetato-1:2κ2 O:O′-tribromido-2κ3 Br-(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-1,7-diene-1κ4 N)dizinc(II)

Abstract

In the title compound, [Zn2Br3(CH3COO)(C16H32N4)], one ZnII atom has a distorted square-planar coordination formed by the four macrocyclic N atoms with an acetate O atom in the apical position and the other ZnII atom has a tetra­hedral coordination environment formed by three Br atoms and one O acetate atom. The two ZnII atoms are linked by an acetate bridge. In the crystal, mol­ecules are linked into centrosymmetric dimers with graph-set motifs R 2 2(16) by an N—H(...)Br inter­action. The mol­ecular configuration is stabilized by an intra­molecular N—H(...)Br hydrogen bond.

Related literature

For related macrocyclic complexes, see: Whimp et al. (1970 [triangle]); Yang (2005 [triangle]); Tebbe et al. (1985 [triangle]). The unsubstituted parent compound exists in the zwitterionic form, see: Spirlet et al. (1991 [triangle]); Maurya et al. (1991 [triangle]). For the preparation of the precursor complex C16H32N4·2HBr·2H2O, see: Hay et al. (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1338-scheme1.jpg

Experimental

Crystal data

  • [Zn2Br3(C2H3O2)(C16H32N4)]
  • M r = 709.97
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1338-efi1.jpg
  • a = 10.2964 (8) Å
  • b = 13.6985 (13) Å
  • c = 18.5235 (18) Å
  • β = 92.280 (1)°
  • V = 2610.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.45 mm−1
  • T = 298 K
  • 0.43 × 0.42 × 0.22 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.240, T max = 0.428
  • 13032 measured reflections
  • 4608 independent reflections
  • 2923 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.067
  • S = 0.88
  • 4608 reflections
  • 269 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810033702/bx2283sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033702/bx2283Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The structures of several related macrocyclic complexes have been reported (Whimp et al., 1970; Yang, 2005; Tebbe et al., 1985). The unsubstituted parent compound exists in the zwitterionic form (Maurya et al., 1991; Spirlet et al., 1991). The zinc teraazamacrocyclic complex cation, [Zn(C16H32N4)] 2+, can combine with different anions to form many kinds of structures.

We herein report the crystal structure of a new compound synthesized by reaction of Zn(CH3COO)2.2H2O and the complex C18H32N4.2HBr.2H2O, Fig.1. The structural analysis reveals that the title complex is formed by a discrete neutral dinuclear C18H35N4O2Br3Zn2 molecule consisting of two Zn atoms bridged by an acetate with the distance of 6.512 (1) Å between the them. Zn(1) is five-coordinated by the four macrocyclic N atoms with acetate O atom as an apical ligand while that the other Zn atom is in a tetrahedron coordinate environment formed by three bromine atoms and one O acetate atom. The average Zn—N(amine) bond distance of 2.1546 (5)Å and Zn—N(imine) bond distance of 2.0582 (5) Å). The average Zn—Br bond distance of 2.4070 (6) Å, the Zn(1)—O(1) bond distance of` 2.0030 (1) Å and the Zn(2)—O(2) bond distance of` 1.9967 (1) Å). In the crystal the molecules are linked into centrosymmetric dimers with graph-set notation R22(16) motifs by a N—H···Br interaction, centred at [1/2,1/2,0] (Bernstein et al., 1995), Fig. 2. The molecular conformation is stabilized by one intramolecular N—H···Br hydrogen bond. Table 1.

Experimental

All chemicals were of reagent grade and were used as received without further purification. The precursor complex C18H32N4.2HBr.2H2O was prepared by the literature method (Hay et al.,1975). To a 10 ml me thanol solution of Zn(CH3COO)2.2H2O(0.2 mmol,0.039 g), a 5 ml methanol solution of C18H32N4.2HBr.2H2O (0.2 mmol,0.0957 g) was added dropwise with stirring. The resulting solution was continuously stirred for about 30 min. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement

All H atoms were refined as riding on their parent atoms, with distances of 0.91 (NH), 0.97 (CH2) and 0.96 (CH3) Å from the parent C and N atoms, with Uiso(H) = 1.2Ueq(CH2, N) or 1.5Ueq(CH3).

Figures

Fig. 1.
The asymmetric structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Zn2Br3(C2H3O2)(C16H32N4)]F(000) = 1408
Mr = 709.97Dx = 1.806 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3476 reflections
a = 10.2964 (8) Åθ = 2.3–27.5°
b = 13.6985 (13) ŵ = 6.45 mm1
c = 18.5235 (18) ÅT = 298 K
β = 92.280 (1)°Prism, purple
V = 2610.6 (4) Å30.43 × 0.42 × 0.22 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer4608 independent reflections
Radiation source: fine-focus sealed tube2923 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 25.0°, θmin = 1.9°
thin–slice ω scansh = −12→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −16→14
Tmin = 0.240, Tmax = 0.428l = −22→17
13032 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.88w = 1/[σ2(Fo2) + (0.0294P)2] where P = (Fo2 + 2Fc2)/3
4608 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.41999 (5)0.72812 (3)0.14536 (3)0.03733 (14)
Zn20.62870 (5)0.70274 (3)−0.07545 (3)0.04247 (15)
Br10.76873 (5)0.82052 (4)−0.01332 (3)0.05506 (16)
Br20.72235 (6)0.62875 (4)−0.18003 (3)0.06807 (19)
Br30.43184 (6)0.78165 (4)−0.11309 (3)0.07402 (19)
N10.5700 (3)0.8386 (2)0.14436 (19)0.0423 (9)
H10.61280.82910.10290.051*
N20.4572 (4)0.6965 (3)0.25310 (19)0.0469 (10)
N30.2615 (3)0.6280 (2)0.15567 (17)0.0368 (9)
H30.29040.56870.14110.044*
N40.3048 (4)0.8384 (2)0.10354 (19)0.0432 (10)
O10.5078 (3)0.6609 (2)0.06459 (16)0.0492 (8)
O20.6337 (3)0.58620 (19)−0.01065 (15)0.0505 (9)
C10.6712 (5)0.8346 (4)0.2045 (3)0.0527 (13)
C20.6081 (5)0.8285 (4)0.2784 (2)0.0676 (16)
H2A0.67580.83940.31540.081*
H2B0.54720.88230.28110.081*
C30.5369 (5)0.7362 (4)0.2978 (3)0.0594 (14)
C40.5646 (5)0.6981 (5)0.3728 (3)0.096 (2)
H4A0.48870.70570.40080.144*
H4B0.63550.73410.39510.144*
H4C0.58730.63030.37050.144*
C50.7534 (5)0.7430 (4)0.1919 (3)0.0635 (15)
H5A0.69940.68610.19410.095*
H5B0.82180.73890.22850.095*
H5C0.79040.74680.14520.095*
C60.7621 (5)0.9236 (4)0.2029 (3)0.0804 (18)
H6A0.79230.93200.15500.121*
H6B0.83510.91340.23600.121*
H6C0.71570.98090.21680.121*
C70.3741 (5)0.6141 (3)0.2740 (2)0.0548 (14)
H7A0.36240.61570.32570.066*
H7B0.41570.55280.26240.066*
C80.2441 (5)0.6206 (3)0.2345 (2)0.0477 (12)
H8A0.19300.56310.24480.057*
H8B0.19760.67750.25100.057*
C90.1416 (4)0.6503 (3)0.1099 (3)0.0465 (12)
C100.0989 (4)0.7575 (3)0.1209 (3)0.0515 (13)
H10A0.01300.76490.09810.062*
H10B0.08990.76740.17230.062*
C110.1824 (5)0.8391 (3)0.0939 (2)0.0453 (12)
C120.1073 (5)0.9219 (3)0.0586 (3)0.0803 (19)
H12A0.16030.97950.05900.121*
H12B0.03020.93420.08470.121*
H12C0.08340.90470.00960.121*
C130.1742 (5)0.6312 (3)0.0316 (2)0.0619 (15)
H13A0.24650.67110.01910.093*
H13B0.10030.64670.00050.093*
H13C0.19630.56360.02590.093*
C140.0265 (5)0.5847 (3)0.1298 (3)0.0669 (15)
H14A0.05180.51740.12680.100*
H14B−0.04600.59670.09690.100*
H14C0.00230.59910.17820.100*
C150.3888 (5)0.9187 (3)0.0800 (3)0.0567 (14)
H15A0.33890.97860.07560.068*
H15B0.42270.90360.03320.068*
C160.4994 (5)0.9317 (3)0.1349 (3)0.0626 (15)
H16A0.55810.98180.11880.075*
H16B0.46570.95220.18070.075*
C170.5813 (5)0.5924 (3)0.0502 (2)0.0380 (11)
C180.6139 (5)0.5127 (3)0.1038 (2)0.0585 (14)
H18A0.54820.51000.13910.088*
H18B0.69660.52620.12740.088*
H18C0.61770.45130.07900.088*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0313 (3)0.0354 (3)0.0452 (3)0.0023 (2)0.0018 (2)−0.0006 (2)
Zn20.0463 (4)0.0369 (3)0.0442 (3)−0.0020 (3)0.0017 (3)0.0035 (2)
Br10.0495 (4)0.0584 (3)0.0572 (3)−0.0164 (3)0.0010 (2)−0.0022 (3)
Br20.1039 (5)0.0423 (3)0.0601 (3)0.0021 (3)0.0300 (3)0.0018 (3)
Br30.0596 (4)0.0683 (4)0.0919 (4)0.0104 (3)−0.0254 (3)0.0014 (3)
N10.032 (2)0.045 (2)0.050 (2)−0.0014 (18)0.0042 (19)−0.0088 (18)
N20.043 (3)0.055 (3)0.042 (2)0.000 (2)0.001 (2)−0.006 (2)
N30.038 (2)0.0321 (19)0.040 (2)0.0040 (17)0.0038 (18)−0.0003 (17)
N40.033 (3)0.036 (2)0.060 (3)0.0012 (18)0.004 (2)0.0044 (18)
O10.043 (2)0.0449 (19)0.060 (2)0.0045 (16)0.0063 (16)−0.0063 (16)
O20.067 (3)0.0379 (18)0.048 (2)0.0049 (16)0.0190 (18)0.0034 (15)
C10.032 (3)0.067 (3)0.058 (3)−0.012 (3)0.001 (3)−0.020 (3)
C20.054 (4)0.093 (4)0.056 (3)−0.008 (3)−0.001 (3)−0.029 (3)
C30.039 (3)0.092 (4)0.048 (3)0.003 (3)0.009 (3)−0.022 (3)
C40.069 (5)0.181 (7)0.038 (3)−0.027 (4)−0.007 (3)0.004 (4)
C50.040 (3)0.094 (4)0.056 (3)0.012 (3)−0.005 (3)−0.007 (3)
C60.052 (4)0.099 (4)0.089 (4)−0.032 (3)0.000 (3)−0.024 (4)
C70.067 (4)0.055 (3)0.043 (3)−0.003 (3)0.002 (3)0.000 (2)
C80.051 (4)0.045 (3)0.048 (3)−0.003 (2)0.016 (3)−0.003 (2)
C90.033 (3)0.036 (3)0.071 (4)−0.002 (2)0.000 (3)0.003 (2)
C100.032 (3)0.044 (3)0.079 (4)0.009 (2)0.002 (3)0.006 (2)
C110.040 (3)0.036 (3)0.060 (3)0.001 (2)−0.001 (3)−0.004 (2)
C120.056 (4)0.043 (3)0.139 (5)0.003 (3)−0.042 (4)0.017 (3)
C130.069 (4)0.055 (3)0.061 (4)0.002 (3)−0.016 (3)−0.004 (3)
C140.042 (4)0.052 (3)0.107 (4)−0.010 (3)−0.001 (3)0.008 (3)
C150.045 (4)0.037 (3)0.088 (4)0.000 (2)0.002 (3)0.016 (3)
C160.049 (4)0.039 (3)0.100 (4)−0.006 (3)0.009 (3)−0.004 (3)
C170.042 (3)0.033 (3)0.039 (3)−0.011 (2)0.000 (2)−0.001 (2)
C180.079 (4)0.046 (3)0.051 (3)0.000 (3)0.004 (3)0.008 (2)

Geometric parameters (Å, °)

Zn1—O12.003 (3)C6—H6A0.9600
Zn1—N42.053 (3)C6—H6B0.9600
Zn1—N22.063 (4)C6—H6C0.9600
Zn1—N32.146 (3)C7—C81.502 (6)
Zn1—N12.163 (3)C7—H7A0.9700
Zn2—O21.997 (3)C7—H7B0.9700
Zn2—Br32.3772 (8)C8—H8A0.9700
Zn2—Br22.4204 (7)C8—H8B0.9700
Zn2—Br12.4236 (7)C9—C131.524 (6)
N1—C161.474 (5)C9—C141.543 (6)
N1—C11.497 (5)C9—C101.548 (6)
N1—H10.9100C10—C111.508 (6)
N2—C31.264 (6)C10—H10A0.9700
N2—C71.479 (5)C10—H10B0.9700
N3—C81.482 (5)C11—C121.508 (6)
N3—C91.501 (5)C12—H12A0.9600
N3—H30.9100C12—H12B0.9600
N4—C111.266 (5)C12—H12C0.9600
N4—C151.476 (5)C13—H13A0.9600
O1—C171.241 (5)C13—H13B0.9600
O2—C171.272 (5)C13—H13C0.9600
C1—C51.537 (6)C14—H14A0.9600
C1—C61.538 (6)C14—H14B0.9600
C1—C21.539 (6)C14—H14C0.9600
C2—C31.512 (7)C15—C161.507 (6)
C2—H2A0.9700C15—H15A0.9700
C2—H2B0.9700C15—H15B0.9700
C3—C41.501 (7)C16—H16A0.9700
C4—H4A0.9600C16—H16B0.9700
C4—H4B0.9600C17—C181.504 (5)
C4—H4C0.9600C18—H18A0.9600
C5—H5A0.9600C18—H18B0.9600
C5—H5B0.9600C18—H18C0.9600
C5—H5C0.9600
O1—Zn1—N4109.13 (13)H6B—C6—H6C109.5
O1—Zn1—N2123.65 (13)N2—C7—C8109.9 (4)
N4—Zn1—N2126.98 (14)N2—C7—H7A109.7
O1—Zn1—N398.04 (12)C8—C7—H7A109.7
N4—Zn1—N394.26 (14)N2—C7—H7B109.7
N2—Zn1—N383.84 (14)C8—C7—H7B109.7
O1—Zn1—N188.39 (12)H7A—C7—H7B108.2
N4—Zn1—N183.31 (14)N3—C8—C7110.1 (4)
N2—Zn1—N192.85 (14)N3—C8—H8A109.6
N3—Zn1—N1173.56 (13)C7—C8—H8A109.6
O2—Zn2—Br3122.76 (10)N3—C8—H8B109.6
O2—Zn2—Br298.32 (8)C7—C8—H8B109.6
Br3—Zn2—Br2108.54 (3)H8A—C8—H8B108.2
O2—Zn2—Br1104.25 (9)N3—C9—C13107.2 (4)
Br3—Zn2—Br1108.71 (3)N3—C9—C14111.6 (4)
Br2—Zn2—Br1114.23 (3)C13—C9—C14109.1 (4)
C16—N1—C1116.5 (4)N3—C9—C10110.5 (4)
C16—N1—Zn1104.9 (3)C13—C9—C10111.3 (4)
C1—N1—Zn1116.4 (3)C14—C9—C10107.2 (4)
C16—N1—H1106.1C11—C10—C9119.4 (4)
C1—N1—H1106.1C11—C10—H10A107.5
Zn1—N1—H1106.1C9—C10—H10A107.5
C3—N2—C7121.6 (4)C11—C10—H10B107.5
C3—N2—Zn1129.4 (4)C9—C10—H10B107.5
C7—N2—Zn1109.1 (3)H10A—C10—H10B107.0
C8—N3—C9116.2 (4)N4—C11—C10121.7 (4)
C8—N3—Zn1104.7 (2)N4—C11—C12123.9 (4)
C9—N3—Zn1115.5 (2)C10—C11—C12114.3 (4)
C8—N3—H3106.6C11—C12—H12A109.5
C9—N3—H3106.6C11—C12—H12B109.5
Zn1—N3—H3106.6H12A—C12—H12B109.5
C11—N4—C15123.0 (4)C11—C12—H12C109.5
C11—N4—Zn1127.9 (3)H12A—C12—H12C109.5
C15—N4—Zn1108.9 (3)H12B—C12—H12C109.5
C17—O1—Zn1143.7 (3)C9—C13—H13A109.5
C17—O2—Zn2118.5 (3)C9—C13—H13B109.5
N1—C1—C5106.7 (3)H13A—C13—H13B109.5
N1—C1—C6111.3 (4)C9—C13—H13C109.5
C5—C1—C6107.8 (4)H13A—C13—H13C109.5
N1—C1—C2110.9 (4)H13B—C13—H13C109.5
C5—C1—C2110.2 (4)C9—C14—H14A109.5
C6—C1—C2109.8 (4)C9—C14—H14B109.5
C3—C2—C1118.8 (4)H14A—C14—H14B109.5
C3—C2—H2A107.6C9—C14—H14C109.5
C1—C2—H2A107.6H14A—C14—H14C109.5
C3—C2—H2B107.6H14B—C14—H14C109.5
C1—C2—H2B107.6N4—C15—C16108.9 (4)
H2A—C2—H2B107.0N4—C15—H15A109.9
N2—C3—C4123.5 (5)C16—C15—H15A109.9
N2—C3—C2120.8 (5)N4—C15—H15B109.9
C4—C3—C2115.7 (4)C16—C15—H15B109.9
C3—C4—H4A109.5H15A—C15—H15B108.3
C3—C4—H4B109.5N1—C16—C15109.5 (4)
H4A—C4—H4B109.5N1—C16—H16A109.8
C3—C4—H4C109.5C15—C16—H16A109.8
H4A—C4—H4C109.5N1—C16—H16B109.8
H4B—C4—H4C109.5C15—C16—H16B109.8
C1—C5—H5A109.5H16A—C16—H16B108.2
C1—C5—H5B109.5O1—C17—O2121.7 (4)
H5A—C5—H5B109.5O1—C17—C18121.9 (4)
C1—C5—H5C109.5O2—C17—C18116.4 (4)
H5A—C5—H5C109.5C17—C18—H18A109.5
H5B—C5—H5C109.5C17—C18—H18B109.5
C1—C6—H6A109.5H18A—C18—H18B109.5
C1—C6—H6B109.5C17—C18—H18C109.5
H6A—C6—H6B109.5H18A—C18—H18C109.5
C1—C6—H6C109.5H18B—C18—H18C109.5
H6A—C6—H6C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···Br2i0.912.803.549 (3)140
N1—H1···Br10.912.743.641 (3)171

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2283).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573
  • Hay, R. W., Lawrance, A. G. & Curtis, N. F. (1975). J. Chem. Soc. Perkin Trans. pp. 591–593.
  • Maurya, M. R., Zaluzec, E. J. & Pavkovic, S. F. (1991). Inorg. Chem.30, 3657–3662.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spirlet, M. R., Rebizant, J. & Barthelemy, P. P. (1991). J. Chem. Soc. Dalton Trans. pp. 2477–2481.
  • Tebbe, K.-F., Heinlein, T. & Fehér, M. (1985). Z. Kristallogr.172 89–95.
  • Whimp, P. O., Bailey, M. F. & Curtis, N. F. (1970). J. Chem. Soc. A, pp. 1956–1963.
  • Yang, Y.-M. (2005). Acta Cryst. E61, m1618–m1619.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography