PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2628.
Published online 2010 September 25. doi:  10.1107/S1600536810037475
PMCID: PMC2983245

3-(3-Cyano­phen­yl)-N-phenyl­oxirane-2-carboxamide

Abstract

In the title compound, C16H12N2O2, both terminal benzene rings are located at the same side of the central epoxide ring, showing a cis conformation. The epoxide ring makes dihedral angles of 76.59 (10) and 62.40 (11)° with the phenyl and cyano­phenyl rings, respectively. Inter­molecular N—H(...)O and weak C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For the use of epoxide-containing compounds as building blocks in synthesis, see: Meth-Cohn & Chen (1999 [triangle]); Porter & Skidmore (2000 [triangle]); Righi et al. (1996 [triangle]); Thijs et al. (1990 [triangle]). For related structures, see: Chen & Kang (2009a [triangle],b [triangle]); He (2009 [triangle]); He et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2628-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O2
  • M r = 264.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2628-efi1.jpg
  • a = 5.459 (2) Å
  • b = 11.141 (7) Å
  • c = 21.844 (5) Å
  • V = 1328.6 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 291 K
  • 0.36 × 0.32 × 0.26 mm

Data collection

  • Oxford Diffraction Gemini S Ultra diffractometer
  • 9766 measured reflections
  • 2078 independent reflections
  • 1378 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.072
  • S = 1.00
  • 2078 reflections
  • 181 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037475/xu5025sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037475/xu5025Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The diffraction measurements were made at the Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University.

supplementary crystallographic information

Comment

α, β-epoxides are key intermediates for synthesizing some natural products (Porter & Skidmore, 2000; Righi et al., 1996). Selective ring opening reactions of oxiranes also provide powerful and efficient routes to a variety of useful compounds including 2,3-epoxyketone (Meth-Cohn et al., 1999), aziridinecarboxylate (Thijs et al., 1990). Various effective systems have been developed over the years for the preparation of chiral epoxides. As a part of our interest in the synthsis of epoxides ring systems (Chen & Kang, 2009a,b; He, 2009, He et al. (2009)), we synthesis the title compound by using Darzens reaction. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The cyanophenyl ring and N-phenylformamide units adopts a cis conformation with respect to the epoxides ring, the dihedral angle between the two phenyl ring is 84.75 (6)°. Epoxide ring makes dihedral angles of 76.59 (10)° and 62.40 (11)° with phenyl rings C1—C6 and C10—C15, respectively. The crystal packing is stabilized by C—H···O and N—H···O hydrogen bonding (Table 1).

Experimental

2-Chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and sodium ethanolate (0.14 g, 2.0 mmol) were dissolved in acetonitrile (2 ml). To the solution was added 3-formylbenzonitrile (0.131 g, 1.0 mmol) at 298 K, the solution was stirred for 60 min and removal of solvent under reduced pressure, the residue was purified through column chromatography on silica gel to give compound (I). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.02 g) in ethyl acetate (2 ml) and evaporating the solvent slowly at room temperature for about 1 d.

Refinement

H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and N—H = 0.86 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C,N). As no significant anomalous scattering, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C16H12N2O2Dx = 1.321 Mg m3
Mr = 264.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3256 reflections
a = 5.459 (2) Åθ = 3.3–29.0°
b = 11.141 (7) ŵ = 0.09 mm1
c = 21.844 (5) ÅT = 291 K
V = 1328.6 (10) Å3Block, colorless
Z = 40.36 × 0.32 × 0.26 mm
F(000) = 552

Data collection

Oxford Diffraction Gemini S Ultra diffractometer1378 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
graphiteθmax = 29.2°, θmin = 3.3°
Detector resolution: 15.9149 pixels mm-1h = −7→3
ω scansk = −15→15
9766 measured reflectionsl = −29→27
2078 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0322P)2] where P = (Fo2 + 2Fc2)/3
2078 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.2729 (2)1.02915 (12)0.76684 (6)0.0522 (4)
O1−0.2382 (2)0.87594 (13)0.69492 (6)0.0540 (4)
N10.1739 (3)0.86142 (13)0.67637 (7)0.0416 (4)
H40.31350.89140.68640.050*
C40.1740 (3)0.76926 (15)0.63124 (8)0.0350 (4)
C30.3670 (3)0.68860 (17)0.63104 (9)0.0430 (5)
H30.49060.69460.66020.052*
C6−0.0019 (4)0.67021 (17)0.54450 (8)0.0453 (5)
H6−0.12520.66390.51530.054*
C100.1794 (3)0.85668 (17)0.83606 (8)0.0389 (4)
C20.3746 (4)0.59914 (18)0.58733 (9)0.0481 (5)
H20.50470.54530.58660.058*
C10.1884 (4)0.58954 (18)0.54452 (9)0.0446 (5)
H10.19230.52820.51570.053*
C90.1163 (3)0.97731 (17)0.81328 (9)0.0429 (5)
H90.06151.03370.84490.051*
C5−0.0106 (3)0.76092 (17)0.58780 (8)0.0423 (5)
H5−0.13910.81570.58780.051*
C80.0212 (4)1.00240 (16)0.75099 (9)0.0442 (4)
H8−0.08671.07240.74790.053*
C150.0302 (3)0.80528 (19)0.88008 (9)0.0470 (5)
H15−0.10750.84660.89370.056*
C110.3875 (4)0.79694 (18)0.81664 (9)0.0491 (5)
H110.49050.83180.78780.059*
C140.0830 (3)0.6931 (2)0.90422 (9)0.0504 (5)
C7−0.0260 (4)0.90608 (17)0.70496 (8)0.0397 (4)
C120.4420 (4)0.68306 (19)0.84092 (10)0.0567 (6)
H120.58030.64180.82770.068*
C16−0.0707 (4)0.6410 (2)0.94879 (11)0.0735 (7)
C130.2917 (4)0.6330 (2)0.88396 (10)0.0552 (5)
H130.32920.55790.89990.066*
N2−0.1971 (5)0.5975 (2)0.98491 (12)0.1095 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.0630 (9)0.0466 (8)0.0469 (8)−0.0178 (7)0.0058 (7)−0.0050 (6)
O10.0430 (7)0.0614 (10)0.0576 (9)−0.0045 (7)0.0059 (7)−0.0130 (7)
N10.0377 (8)0.0450 (9)0.0421 (9)−0.0068 (7)0.0002 (7)−0.0096 (8)
C40.0367 (9)0.0361 (10)0.0323 (10)−0.0069 (8)0.0031 (8)0.0022 (8)
C30.0356 (9)0.0477 (12)0.0457 (11)−0.0025 (9)−0.0070 (9)−0.0043 (10)
C60.0479 (11)0.0535 (12)0.0344 (10)−0.0047 (10)−0.0047 (9)−0.0005 (10)
C100.0424 (10)0.0417 (10)0.0327 (10)−0.0036 (9)−0.0020 (8)−0.0081 (9)
C20.0424 (10)0.0458 (12)0.0561 (13)0.0033 (10)0.0024 (10)−0.0049 (10)
C10.0531 (12)0.0429 (11)0.0376 (11)−0.0061 (10)0.0074 (9)−0.0057 (9)
C90.0511 (10)0.0401 (11)0.0375 (11)−0.0015 (9)0.0085 (9)−0.0064 (9)
C50.0446 (10)0.0454 (11)0.0370 (11)0.0053 (10)−0.0027 (9)0.0009 (9)
C80.0537 (11)0.0371 (10)0.0418 (11)−0.0009 (9)0.0034 (9)−0.0023 (9)
C150.0455 (10)0.0526 (12)0.0429 (12)0.0048 (10)0.0038 (10)−0.0010 (10)
C110.0448 (10)0.0616 (14)0.0408 (11)0.0010 (10)0.0056 (9)−0.0048 (11)
C140.0535 (12)0.0542 (13)0.0435 (12)0.0022 (11)−0.0021 (10)0.0068 (11)
C70.0475 (11)0.0356 (10)0.0359 (10)−0.0027 (9)0.0026 (9)0.0031 (9)
C120.0561 (13)0.0611 (15)0.0529 (13)0.0186 (11)0.0003 (11)−0.0095 (12)
C160.0719 (16)0.0759 (16)0.0726 (17)0.0088 (14)0.0115 (14)0.0317 (15)
C130.0690 (14)0.0470 (12)0.0496 (12)0.0069 (12)−0.0081 (11)−0.0007 (10)
N20.1022 (19)0.111 (2)0.115 (2)0.0091 (16)0.0281 (17)0.0571 (17)

Geometric parameters (Å, °)

O2—C91.447 (2)C2—H20.9300
O2—C81.448 (2)C1—H10.9300
O1—C71.226 (2)C9—C81.483 (3)
N1—C71.352 (2)C9—H90.9800
N1—C41.423 (2)C5—H50.9300
N1—H40.8600C8—C71.493 (3)
C4—C31.384 (2)C8—H80.9800
C4—C51.387 (2)C15—C141.387 (3)
C3—C21.381 (3)C15—H150.9300
C3—H30.9300C11—C121.407 (2)
C6—C11.374 (3)C11—H110.9300
C6—C51.385 (3)C14—C131.394 (3)
C6—H60.9300C14—C161.411 (2)
C10—C111.383 (3)C12—C131.367 (3)
C10—C151.384 (2)C12—H120.9300
C10—C91.474 (3)C16—N21.155 (3)
C2—C11.385 (3)C13—H130.9300
C9—O2—C861.64 (11)C6—C5—C4119.40 (18)
C7—N1—C4125.86 (15)C6—C5—H5120.3
C7—N1—H4117.1C4—C5—H5120.3
C4—N1—H4117.1O2—C8—C959.14 (12)
C3—C4—C5120.47 (17)O2—C8—C7118.21 (15)
C3—C4—N1118.09 (16)C9—C8—C7122.89 (16)
C5—C4—N1121.43 (16)O2—C8—H8115.0
C2—C3—C4119.58 (17)C9—C8—H8115.0
C2—C3—H3120.2C7—C8—H8115.0
C4—C3—H3120.2C10—C15—C14120.97 (18)
C1—C6—C5120.21 (18)C10—C15—H15119.5
C1—C6—H6119.9C14—C15—H15119.5
C5—C6—H6119.9C10—C11—C12119.47 (18)
C11—C10—C15119.82 (18)C10—C11—H11120.3
C11—C10—C9121.80 (17)C12—C11—H11120.3
C15—C10—C9118.31 (17)C15—C14—C13118.82 (19)
C3—C2—C1120.03 (18)C15—C14—C16120.7 (2)
C3—C2—H2120.0C13—C14—C16120.5 (2)
C1—C2—H2120.0O1—C7—N1125.40 (18)
C6—C1—C2120.31 (17)O1—C7—C8118.70 (17)
C6—C1—H1119.8N1—C7—C8115.87 (16)
C2—C1—H1119.8C13—C12—C11120.00 (19)
O2—C9—C10117.57 (16)C13—C12—H12120.0
O2—C9—C859.22 (12)C11—C12—H12120.0
C10—C9—C8124.29 (16)N2—C16—C14179.4 (3)
O2—C9—H9114.7C12—C13—C14120.9 (2)
C10—C9—H9114.7C12—C13—H13119.5
C8—C9—H9114.7C14—C13—H13119.5
C7—N1—C4—C3−143.99 (18)C10—C9—C8—C71.4 (3)
C7—N1—C4—C537.1 (3)C11—C10—C15—C14−1.4 (3)
C5—C4—C3—C2−0.2 (3)C9—C10—C15—C14−178.62 (18)
N1—C4—C3—C2−179.08 (17)C15—C10—C11—C121.5 (3)
C4—C3—C2—C1−0.8 (3)C9—C10—C11—C12178.54 (18)
C5—C6—C1—C2−0.8 (3)C10—C15—C14—C130.8 (3)
C3—C2—C1—C61.3 (3)C10—C15—C14—C16−179.6 (2)
C8—O2—C9—C10115.39 (18)C4—N1—C7—O1−2.2 (3)
C11—C10—C9—O23.5 (3)C4—N1—C7—C8179.70 (15)
C15—C10—C9—O2−179.39 (15)O2—C8—C7—O1174.09 (18)
C11—C10—C9—C873.5 (3)C9—C8—C7—O1104.4 (2)
C15—C10—C9—C8−109.4 (2)O2—C8—C7—N1−7.6 (2)
C1—C6—C5—C4−0.2 (3)C9—C8—C7—N1−77.4 (2)
C3—C4—C5—C60.7 (3)C10—C11—C12—C13−0.9 (3)
N1—C4—C5—C6179.55 (16)C11—C12—C13—C140.3 (3)
C9—O2—C8—C7−113.41 (19)C15—C14—C13—C12−0.2 (3)
C10—C9—C8—O2−104.2 (2)C16—C14—C13—C12−179.8 (2)
O2—C9—C8—C7105.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H4···O1i0.862.463.239 (3)151 (1)
C11—H11···O1i0.932.563.467 (3)165 (1)
C12—H12···O2ii0.932.553.302 (3)139 (1)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5025).

References

  • Chen, L.-M. & Kang, T.-R. (2009a). Acta Cryst. E65, o3126. [PMC free article] [PubMed]
  • Chen, L.-M. & Kang, T.-R. (2009b). Acta Cryst. E65, o3137. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • He, L. (2009). Acta Cryst. E65, o2052. [PMC free article] [PubMed]
  • He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999. [PMC free article] [PubMed]
  • Meth-Cohn, O. & Chen, Y. (1999). Tetrahedron Lett.40, 6069–6072.
  • Oxford Diffraction (2009). CrysAlis PRO Oxford Diffraction Ltd, Yarnton, England.
  • Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.
  • Righi, G., Rumboldt, G. & Bonini, C. (1996). J. Org. Chem.61, 3557–3560.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thijs, L., Porskamp, J. J. M., van Loon, A. A. W. M., Derks, M. P. W., Feenstra, R. W., Legters, J. & Zwanenburg, B. (1990). Tetrahedron, 46, 2611–2614.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography