PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1209–m1210.
Published online 2010 September 4. doi:  10.1107/S1600536810035282
PMCID: PMC2983243

Poly[(μ2-2,2′-bipyridine-κ2 N:N′)bis­(μ3-2,2,2-trifluoro­acetato-κ3 O:O:O′)disilver(I)]

Abstract

In the title salt, [Ag2(CF3CO2)2(C10H8N2)]n, which may also be regarded as a coordination polymer if long Ag(...)O inter­actions are considered, each of the N atoms of the somewhat twisted 2,2′-bipyridine mol­ecule [N—C—C—N = −27.5 (4)°] binds to an Ag atom, and each of the carboxyl­ate ligands is tridentate, linking to three Ag atoms. The bidentate carboxyl­ate O atoms bridge the same two Ag atoms, resulting in the formation of Ag2O2 rings. These rings are bridged by the 2,2′-bipyridine ligands, forming a chain along the b axis. The chains are linked into double chains via the remaining Ag—O bonds and Ag(...)Ag contacts. As a consequence of the Ag(...)Ag contacts, the NO4 donor set about each Ag atom is heavily distorted. Finally, the chains are linked into a three-dimensional network by a combination of C—H(...)O and C—H(...)F inter­actions.

Related literature

For structural diversity in the supra­molecular structures of silver salts, see: Kundu et al. (2010 [triangle]). For a related Ag salt, see: Arman et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1209-scheme1.jpg

Experimental

Crystal data

  • [Ag2(C2F3O2)2(C10H8N2)]
  • M r = 597.96
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1209-efi1.jpg
  • a = 24.597 (6) Å
  • b = 6.8474 (14) Å
  • c = 21.253 (5) Å
  • β = 116.029 (4)°
  • V = 3216.5 (13) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.53 mm−1
  • T = 98 K
  • 0.31 × 0.29 × 0.20 mm

Data collection

  • Rigaku AFC12/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.619, T max = 1.000
  • 10231 measured reflections
  • 3662 independent reflections
  • 3469 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.091
  • S = 1.09
  • 3661 reflections
  • 253 parameters
  • H-atom parameters constrained
  • Δρmax = 0.66 e Å−3
  • Δρmin = −0.65 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035282/hb5622sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035282/hb5622Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Supramolecular structures of silver salts are highly dependent upon the nature of counter anions and the presence of solvent (Kundu et al., 2010). During the course of on-going crystal engineering studies on silver salts (Arman et al., 2010), the title salt was isolated and characterized.

The asymmetric unit of (I) comprises two Ag cations, a 2,2'-bipyridine molecule and two trifluoroacetate anions, Fig. 1. Each of the 2,2'-bipyridine-N atoms coordinates to a Ag atom bringing into close proximity the Ag1 and Ag2 atoms [Ag1···Ag2 = 3.1941 (7) Å]. In order to relive steric pressure, the 2,2'-bipyridine molecule is twisted as seen in the torsion angle [N1–C5–C6–N2 = -27.5 (4) °] and the dihedral angle formed between the pyridine rings of 26.93 (15) °. Each Ag atom forms a close Ag–O bond to a carboxylate-O, i.e. Ag1–O1 and Ag2–O3, Table 1, and each of the O1 and O3 atoms also bridges a neighbouring Ag atom to form a non-planar Ag2O2 ring. The second carboxylate-O atom in each case, i.e. O2 and O4, bridges to a different Ag atom so that each carboxylate ligand is tridentate. The supramolecular assembly is a double chain along the b axis whereby one row of Ag2O2 rings bridged by 2,2'-bipyridine molecules is connected to a second row via the Ag1–O2 and Ag2–O4 bonds and vice versa. Additional stability to the double chain is afforded by Ag1···Ag1 and Ag2···Ag2 interactions, Fig. 2 and Table 1. In terms of coordination geometry, each Ag atom exists within a NO3 donor set which is grossly distorted owing to the presence of two close Ag···Ag contacts. Chains are consolidated in the crystal packing by a combination of C–H···O and C–H···F contacts, Table 2.

Experimental

2,2'-Bipyridine (0.015 g, 0.1 mmol) was dissolved in 5 ml of methanol. Added to this was silver trifluoroacetate (0.044 g, 0.2 mmol) dissolved in 7 ml of methanol. The resulting solution was gently heated and allowed to stand for slow evaporation affording colourless blocks of (I) after five days.

Refinement

C-bound H-atoms were placed in calculated positions (C–H 0.95 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). In the final refinement a low angle reflection evidently effected by the beam stop were omitted, i.e. (200).

Figures

Fig. 1.
Asymmetric unit in the structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Portion of the supramolecular double chain aligned along the b axis in (I).

Crystal data

[Ag2(C2F3O2)2(C10H8N2)]F(000) = 2288
Mr = 597.96Dx = 2.470 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 8570 reflections
a = 24.597 (6) Åθ = 1.8–40.5°
b = 6.8474 (14) ŵ = 2.53 mm1
c = 21.253 (5) ÅT = 98 K
β = 116.029 (4)°Block, colourless
V = 3216.5 (13) Å30.31 × 0.29 × 0.20 mm
Z = 8

Data collection

Rigaku AFC12K/SATURN724 diffractometer3662 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
graphiteRint = 0.037
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −25→31
Tmin = 0.619, Tmax = 1.000k = −8→8
10231 measured reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0473P)2 + 8.2186P] where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = −0.65 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag10.270544 (11)0.27690 (4)0.078818 (12)0.01708 (10)
Ag20.239869 (12)0.73275 (4)0.063674 (12)0.01661 (10)
F10.05870 (11)0.2464 (3)0.01451 (13)0.0250 (5)
F20.04349 (10)0.0721 (4)−0.07648 (10)0.0313 (5)
F30.07622 (10)−0.0612 (3)0.02507 (11)0.0243 (4)
F40.45993 (11)0.7568 (3)0.16884 (13)0.0287 (5)
F50.45617 (9)0.9732 (3)0.09408 (11)0.0298 (5)
F60.43891 (9)1.0540 (3)0.18104 (11)0.0296 (5)
O10.18662 (10)0.1008 (3)0.06300 (11)0.0186 (5)
O20.15108 (12)0.2233 (3)−0.04584 (13)0.0207 (5)
O30.32741 (11)0.9056 (3)0.11732 (12)0.0189 (5)
O40.35046 (13)0.7790 (4)0.03384 (13)0.0234 (5)
N10.32454 (12)0.4507 (4)0.18047 (13)0.0148 (5)
N20.20388 (13)0.5665 (4)0.13321 (13)0.0161 (5)
C10.38483 (15)0.4390 (5)0.20200 (16)0.0179 (6)
H10.39910.40090.16890.021*
C20.42676 (14)0.4794 (5)0.26943 (17)0.0187 (6)
H20.46880.46680.28260.022*
C30.40639 (15)0.5387 (5)0.31752 (16)0.0185 (6)
H30.43430.56820.36430.022*
C40.34421 (15)0.5545 (4)0.29617 (15)0.0166 (6)
H40.32910.59510.32830.020*
C50.30455 (14)0.5100 (4)0.22711 (16)0.0156 (6)
C60.23773 (14)0.5279 (4)0.20229 (16)0.0147 (6)
C70.21148 (15)0.5069 (4)0.24806 (15)0.0160 (6)
H70.23610.48260.29640.019*
C80.14863 (16)0.5217 (5)0.22253 (18)0.0205 (6)
H80.13000.50920.25310.025*
C90.11430 (15)0.5549 (5)0.15166 (18)0.0193 (6)
H90.07150.56250.13250.023*
C100.14338 (15)0.5769 (4)0.10896 (17)0.0182 (6)
H100.11950.60040.06040.022*
C110.14613 (14)0.1417 (4)0.00329 (15)0.0156 (6)
C120.08041 (15)0.0970 (5)−0.00906 (16)0.0174 (6)
C130.36199 (14)0.8644 (4)0.09028 (15)0.0149 (6)
C140.42956 (15)0.9154 (5)0.13331 (16)0.0174 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.01380 (15)0.02195 (15)0.01404 (15)−0.00357 (9)0.00477 (11)−0.00392 (8)
Ag20.01414 (15)0.02253 (15)0.01274 (15)−0.00263 (8)0.00552 (11)0.00048 (8)
F10.0216 (12)0.0243 (10)0.0344 (12)0.0023 (8)0.0171 (10)−0.0020 (8)
F20.0195 (10)0.0516 (14)0.0162 (10)−0.0099 (10)0.0017 (8)−0.0047 (9)
F30.0235 (10)0.0207 (9)0.0324 (11)−0.0027 (8)0.0158 (9)0.0038 (8)
F40.0181 (11)0.0223 (10)0.0330 (13)0.0050 (8)−0.0005 (10)0.0093 (8)
F50.0195 (10)0.0442 (13)0.0257 (11)−0.0064 (10)0.0100 (9)0.0057 (9)
F60.0182 (10)0.0323 (11)0.0288 (11)−0.0015 (8)0.0017 (9)−0.0153 (9)
O10.0154 (11)0.0236 (11)0.0126 (10)−0.0014 (9)0.0024 (9)−0.0004 (8)
O20.0187 (13)0.0276 (12)0.0190 (12)0.0018 (9)0.0112 (11)0.0058 (9)
O30.0144 (11)0.0240 (11)0.0180 (10)−0.0016 (9)0.0068 (9)−0.0030 (9)
O40.0192 (13)0.0307 (13)0.0158 (12)0.0028 (10)0.0035 (11)−0.0065 (9)
N10.0164 (12)0.0141 (11)0.0121 (11)−0.0021 (10)0.0045 (10)−0.0019 (9)
N20.0171 (13)0.0170 (12)0.0133 (12)0.0010 (10)0.0058 (10)0.0029 (9)
C10.0185 (15)0.0191 (14)0.0156 (14)−0.0022 (12)0.0070 (13)−0.0038 (11)
C20.0140 (14)0.0221 (15)0.0185 (15)−0.0027 (13)0.0058 (12)−0.0019 (12)
C30.0196 (16)0.0204 (14)0.0112 (13)0.0010 (12)0.0027 (12)−0.0015 (11)
C40.0206 (16)0.0149 (13)0.0117 (13)0.0010 (11)0.0048 (12)−0.0013 (11)
C50.0196 (15)0.0117 (13)0.0163 (14)−0.0001 (12)0.0086 (12)0.0012 (10)
C60.0174 (14)0.0102 (12)0.0173 (14)0.0011 (11)0.0083 (12)−0.0011 (10)
C70.0243 (16)0.0141 (13)0.0110 (13)0.0007 (13)0.0091 (12)0.0022 (10)
C80.0291 (18)0.0154 (14)0.0245 (16)−0.0005 (13)0.0185 (15)−0.0012 (12)
C90.0162 (15)0.0160 (13)0.0268 (16)−0.0010 (12)0.0105 (13)−0.0021 (12)
C100.0175 (15)0.0162 (14)0.0185 (14)−0.0010 (12)0.0057 (13)0.0018 (11)
C110.0137 (14)0.0162 (13)0.0138 (13)−0.0009 (12)0.0031 (11)−0.0016 (11)
C120.0154 (15)0.0203 (15)0.0155 (14)−0.0012 (12)0.0059 (12)−0.0027 (11)
C130.0119 (14)0.0150 (13)0.0142 (13)0.0000 (11)0.0024 (11)0.0008 (11)
C140.0152 (15)0.0184 (14)0.0171 (14)0.0006 (12)0.0057 (12)0.0008 (11)

Geometric parameters (Å, °)

Ag1—O12.284 (2)O4—Ag2iii2.280 (3)
Ag1—N12.309 (3)N1—C51.348 (4)
Ag1—O2i2.323 (3)N1—C11.349 (4)
Ag1—O3ii2.844 (2)N2—C101.346 (4)
Ag1—O22.993 (3)N2—C61.359 (4)
Ag1—Ag1i3.0675 (9)C1—C21.377 (4)
Ag1—Ag23.1941 (7)C1—H10.9500
Ag2—O32.276 (2)C2—C31.382 (4)
Ag2—O4iii2.280 (3)C2—H20.9500
Ag2—N22.326 (3)C3—C41.396 (5)
Ag2—O1iv2.837 (2)C3—H30.9500
Ag2—O43.069 (3)C4—C51.394 (4)
Ag2—Ag2iii2.9687 (8)C4—H40.9500
F1—C121.348 (4)C5—C61.495 (4)
F2—C121.328 (4)C6—C71.391 (4)
F3—C121.333 (4)C7—C81.400 (5)
F4—C141.346 (4)C7—H70.9500
F5—C141.326 (4)C8—C91.385 (5)
F6—C141.333 (4)C8—H80.9500
O1—C111.254 (4)C9—C101.388 (4)
O2—C111.237 (4)C9—H90.9500
O2—Ag1i2.322 (3)C10—H100.9500
O3—C131.250 (4)C11—C121.550 (4)
O4—C131.250 (4)C13—C141.545 (4)
O1—Ag1—N1121.42 (9)C5—C4—C3119.1 (3)
O1—Ag1—O2i140.48 (9)C5—C4—H4120.5
N1—Ag1—O2i94.01 (9)C3—C4—H4120.5
O1—Ag1—Ag1i86.13 (5)N1—C5—C4121.9 (3)
N1—Ag1—Ag1i149.60 (7)N1—C5—C6117.7 (3)
O2i—Ag1—Ag1i65.77 (7)C4—C5—C6120.4 (3)
O1—Ag1—Ag2110.04 (6)N2—C6—C7121.6 (3)
N1—Ag1—Ag266.67 (7)N2—C6—C5117.0 (3)
O2i—Ag1—Ag299.26 (6)C7—C6—C5121.4 (3)
Ag1i—Ag1—Ag293.284 (12)C6—C7—C8119.6 (3)
O3—Ag2—O4iii143.51 (9)C6—C7—H7120.2
O3—Ag2—N2118.43 (9)C8—C7—H7120.2
O4iii—Ag2—N293.99 (10)C9—C8—C7118.4 (3)
O3—Ag2—Ag2iii85.12 (6)C9—C8—H8120.8
O4iii—Ag2—Ag2iii70.16 (7)C7—C8—H8120.8
N2—Ag2—Ag2iii151.77 (7)C8—C9—C10119.1 (3)
O3—Ag2—Ag1109.14 (6)C8—C9—H9120.5
O4iii—Ag2—Ag198.63 (6)C10—C9—H9120.5
N2—Ag2—Ag166.22 (7)N2—C10—C9123.0 (3)
Ag2iii—Ag2—Ag192.459 (12)N2—C10—H10118.5
C11—O1—Ag1107.24 (19)C9—C10—H10118.5
C11—O2—Ag1i131.1 (2)O2—C11—O1128.8 (3)
C13—O3—Ag2109.72 (19)O2—C11—C12115.3 (3)
C13—O4—Ag2iii127.5 (2)O1—C11—C12115.7 (3)
C5—N1—C1118.0 (3)F2—C12—F3107.7 (3)
C5—N1—Ag1126.7 (2)F2—C12—F1107.7 (3)
C1—N1—Ag1112.5 (2)F3—C12—F1106.1 (2)
C10—N2—C6118.3 (3)F2—C12—C11112.1 (2)
C10—N2—Ag2113.3 (2)F3—C12—C11113.1 (3)
C6—N2—Ag2123.9 (2)F1—C12—C11109.9 (3)
N1—C1—C2123.4 (3)O4—C13—O3129.3 (3)
N1—C1—H1118.3O4—C13—C14114.0 (3)
C2—C1—H1118.3O3—C13—C14116.7 (3)
C1—C2—C3118.7 (3)F5—C14—F6107.3 (3)
C1—C2—H2120.7F5—C14—F4106.7 (3)
C3—C2—H2120.7F6—C14—F4106.2 (3)
C2—C3—C4118.9 (3)F5—C14—C13113.3 (3)
C2—C3—H3120.5F6—C14—C13113.1 (3)
C4—C3—H3120.5F4—C14—C13109.7 (3)
O1—Ag1—Ag2—O3159.39 (8)C1—C2—C3—C40.3 (5)
N1—Ag1—Ag2—O342.84 (9)C2—C3—C4—C50.1 (5)
O2i—Ag1—Ag2—O3−47.55 (9)C1—N1—C5—C4−1.4 (4)
Ag1i—Ag1—Ag2—O3−113.53 (6)Ag1—N1—C5—C4158.2 (2)
O1—Ag1—Ag2—O4iii−44.62 (9)C1—N1—C5—C6178.3 (3)
N1—Ag1—Ag2—O4iii−161.18 (10)Ag1—N1—C5—C6−22.1 (4)
O2i—Ag1—Ag2—O4iii108.43 (9)C3—C4—C5—N10.5 (5)
Ag1i—Ag1—Ag2—O4iii42.45 (7)C3—C4—C5—C6−179.2 (3)
O1—Ag1—Ag2—N245.95 (9)C10—N2—C6—C7−2.5 (4)
N1—Ag1—Ag2—N2−70.61 (11)Ag2—N2—C6—C7152.2 (2)
O2i—Ag1—Ag2—N2−161.00 (10)C10—N2—C6—C5177.8 (3)
Ag1i—Ag1—Ag2—N2133.03 (8)Ag2—N2—C6—C5−27.5 (4)
O1—Ag1—Ag2—Ag2iii−114.92 (6)N1—C5—C6—N2−27.5 (4)
N1—Ag1—Ag2—Ag2iii128.52 (7)C4—C5—C6—N2152.2 (3)
O2i—Ag1—Ag2—Ag2iii38.13 (7)N1—C5—C6—C7152.8 (3)
Ag1i—Ag1—Ag2—Ag2iii−27.845 (17)C4—C5—C6—C7−27.5 (4)
N1—Ag1—O1—C11132.75 (19)N2—C6—C7—C81.3 (4)
O2i—Ag1—O1—C11−76.9 (2)C5—C6—C7—C8−179.0 (3)
Ag1i—Ag1—O1—C11−33.61 (19)C6—C7—C8—C90.7 (5)
Ag2—Ag1—O1—C1158.5 (2)C7—C8—C9—C10−1.5 (5)
O4iii—Ag2—O3—C13−78.8 (2)C6—N2—C10—C91.7 (5)
N2—Ag2—O3—C13131.3 (2)Ag2—N2—C10—C9−155.6 (3)
Ag2iii—Ag2—O3—C13−32.30 (19)C8—C9—C10—N20.3 (5)
Ag1—Ag2—O3—C1358.6 (2)Ag1i—O2—C11—O131.3 (5)
O1—Ag1—N1—C5−20.2 (3)Ag1i—O2—C11—C12−153.5 (2)
O2i—Ag1—N1—C5178.2 (2)Ag1—O1—C11—O215.3 (4)
Ag1i—Ag1—N1—C5132.1 (2)Ag1—O1—C11—C12−159.9 (2)
Ag2—Ag1—N1—C579.9 (2)O2—C11—C12—F227.9 (4)
O1—Ag1—N1—C1140.4 (2)O1—C11—C12—F2−156.2 (3)
O2i—Ag1—N1—C1−21.3 (2)O2—C11—C12—F3149.9 (3)
Ag1i—Ag1—N1—C1−67.4 (3)O1—C11—C12—F3−34.2 (4)
Ag2—Ag1—N1—C1−119.6 (2)O2—C11—C12—F1−91.8 (3)
O3—Ag2—N2—C10140.1 (2)O1—C11—C12—F184.1 (3)
O4iii—Ag2—N2—C10−22.5 (2)Ag2iii—O4—C13—O326.8 (5)
Ag2iii—Ag2—N2—C10−76.4 (3)Ag2iii—O4—C13—C14−156.6 (2)
Ag1—Ag2—N2—C10−120.2 (2)Ag2—O3—C13—O415.0 (4)
O3—Ag2—N2—C6−15.7 (3)Ag2—O3—C13—C14−161.6 (2)
O4iii—Ag2—N2—C6−178.3 (2)O4—C13—C14—F538.5 (4)
Ag2iii—Ag2—N2—C6127.8 (2)O3—C13—C14—F5−144.4 (3)
Ag1—Ag2—N2—C684.0 (2)O4—C13—C14—F6160.9 (3)
C5—N1—C1—C21.8 (5)O3—C13—C14—F6−22.0 (4)
Ag1—N1—C1—C2−160.6 (3)O4—C13—C14—F4−80.7 (3)
N1—C1—C2—C3−1.3 (5)O3—C13—C14—F496.5 (3)

Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x, y−1, z; (iii) −x+1/2, −y+3/2, −z; (iv) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O1v0.952.503.410 (4)159
C8—H8···O3vi0.952.583.287 (4)132
C1—H1···F6ii0.952.543.072 (4)116
C2—H2···F4vii0.952.553.145 (4)121
C10—H10···F3iv0.952.523.076 (4)117

Symmetry codes: (v) −x+1/2, y+1/2, −z+1/2; (vi) −x+1/2, y−1/2, −z+1/2; (ii) x, y−1, z; (vii) −x+1, y, −z+1/2; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5622).

References

  • Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1167–m1168. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Kundu, N., Audhya, A., Towsif Abtab, Sk. Md., Ghosh, S., Tiekink, E. R. T. & Chaudhury, M. (2010). Cryst. Growth Des.10, 1269–1282.
  • Molecular Structure Corporation & Rigaku (2005). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography