PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2500.
Published online 2010 September 4. doi:  10.1107/S1600536810035026
PMCID: PMC2983235

N-(6-Bromo­meth­yl-2-pyrid­yl)acetamide

Abstract

The title acetamide compound, C8H9BrN2O, crystallizes with three crystallographically independent mol­ecules (A, B and C) in the asymmetric unit. In mol­ecule A, the mean plane through the acetamide unit is inclined at a dihedral angle of 4.40 (11)° with respect to the pyridine ring [10.31 (12) and 2.27 (11)°, respectively, for mol­ecules B and C]. In the crystal structure, mol­ecules are inter­connected into sheets parallel to the ac plane by N—H(...)O, C—H(...)Br, C—H(...)O and C—H(...)N hydrogen bonds. The structure is further stabilized by weak inter­molecular C—H(...)π inter­actions.

Related literature

For general background and applications of acetamide compounds, see: Goswami et al. (2000 [triangle], 2005 [triangle]); Ghosh & Masanta (2006 [triangle]). For the preparation, see: Goswami et al. (2001 [triangle], 2004 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2500-scheme1.jpg

Experimental

Crystal data

  • C8H9BrN2O
  • M r = 229.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2500-efi1.jpg
  • a = 4.1894 (8) Å
  • b = 26.219 (5) Å
  • c = 23.817 (4) Å
  • β = 94.148 (4)°
  • V = 2609.2 (8) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 4.68 mm−1
  • T = 100 K
  • 0.31 × 0.14 × 0.09 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.323, T max = 0.668
  • 72227 measured reflections
  • 10228 independent reflections
  • 8239 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.100
  • S = 1.06
  • 10228 reflections
  • 340 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.37 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035026/ci5177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035026/ci5177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). JHG also thanks USM for the award of a USM Fellowship. SG and DS acknowledge the DST and CSIR, Government of India, for funding. NKD acknowedges the UGC for a fellowship.

supplementary crystallographic information

Comment

Pyridine amides having bromine in side chains are enormously useful as they are suitable intermediates for the synthesis of flexible receptors for various biologically important substrates. In addition, they can easily be coupled with alcohol by Williamson reaction and to the amine by a simple reaction with a base. These types of compounds are therefore attracting the attention of molecular recognition chemist (Goswami et al., 2000, 2005; Ghosh & Masanta, 2006).

The title acetamide compound crystallizes in space group P21/c with three crystallographically independent molecules in the asymmetric unit, designated A, B and C (Fig. 1). The molecular geometries of all molecules are essentially similar, as indicated by the r.m.s. deviations for the superposition of the non-H atoms of any pair of molecules using XP in SHELXTL (Sheldrick, 2008) being 0.137 (A/B pair), 0.026 (A/C pair) and 0.130 Å (B/C pair). The superposition of molecular pairs are shown in Fig. 2. The corresponding geometric parameters of the three molecules agree well with each other. In molecule A, the mean plane formed through the acetamide moiety (N2A/C7A/C8A/O1A) is inclined at an interplanar angle of 4.40 (11)° with the pyridine ring (C2A-C6A/N1A); the respective angles for molecules B and C are 10.31 (2) and 2.27 (11)°, respectively.

In the crystal structure, intermolecular N2A—H2NA···O1C, N2B—H2NB···O1A, N2C—H2NC···O1B, C1B—H1BA···Br1B, C8B—H8BB···O1A and C8C—H8CA···N1A hydrogen bonds (Table 1) interconnect molecules into two-molecule-wide arrays parallel to ac plane (Fig. 3). Further stabilization of the crystal structure is provided by weak intermolecular C1A—H1AB···Cg1 and C1C—H1CB···Cg2 interactions (Table 1) where Cg1 and Cg2 are the centroids of C2A-C6A/N1A and C2C-C6C/N1C pyridine rings, respectively.

Experimental

The title compound was prepared according to literature procedures (Goswami et al., 2001, 2004) and was recrystallized from a mixture of CHCl3 and CH3OH (9:1) by slow evaporation method.

Refinement

H atoms bound to N atoms are located in a difference Fourier map and allowed to refine freely [range of N—H = 0.73 (3)–0.93 (3) Å]. The remaining H atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was applied to methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
Fig. 2.
Fit of (a) molecule A (dashed lines) on molecule B (solid lines), (b) molecule C (dashed lines) on molecule A (solid lines), (c) molecule C (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
Fig. 3.
The crystal structure of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C8H9BrN2OF(000) = 1368
Mr = 229.08Dx = 1.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9903 reflections
a = 4.1894 (8) Åθ = 3.0–33.5°
b = 26.219 (5) ŵ = 4.68 mm1
c = 23.817 (4) ÅT = 100 K
β = 94.148 (4)°Plate, brown
V = 2609.2 (8) Å30.31 × 0.14 × 0.09 mm
Z = 12

Data collection

Bruker APEXII DUO CCD area-detector diffractometer10228 independent reflections
Radiation source: fine-focus sealed tube8239 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 33.7°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −6→6
Tmin = 0.323, Tmax = 0.668k = −40→40
72227 measured reflectionsl = −36→36

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.052P)2 + 0.7624P] where P = (Fo2 + 2Fc2)/3
10228 reflections(Δ/σ)max = 0.005
340 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1A1.14992 (5)0.418118 (8)0.367324 (7)0.02031 (5)
O1A0.5948 (4)0.25161 (6)0.13677 (6)0.0296 (3)
N1A1.1052 (4)0.35205 (6)0.24649 (6)0.0167 (3)
N2A0.9447 (4)0.27575 (6)0.20938 (7)0.0191 (3)
C1A1.3223 (5)0.42675 (8)0.29327 (7)0.0196 (3)
H1AA1.34600.46280.28560.024*
H1AB1.53260.41120.29390.024*
C2A1.1091 (4)0.40309 (7)0.24723 (7)0.0166 (3)
C3A0.9351 (5)0.43276 (7)0.20772 (7)0.0186 (3)
H3AA0.94130.46820.20950.022*
C4A0.7516 (5)0.40783 (7)0.16540 (7)0.0200 (3)
H4AA0.63310.42670.13820.024*
C5A0.7432 (5)0.35522 (7)0.16334 (7)0.0195 (3)
H5AA0.62120.33810.13510.023*
C6A0.9266 (4)0.32861 (7)0.20556 (7)0.0171 (3)
C7A0.7892 (5)0.24022 (7)0.17560 (8)0.0198 (3)
C8A0.8755 (5)0.18609 (7)0.18922 (8)0.0235 (4)
H8AA0.70980.16390.17350.035*
H8AB0.89850.18180.22930.035*
H8AC1.07380.17780.17350.035*
Br1B0.14297 (5)0.058241 (8)0.203481 (7)0.02180 (5)
O1B0.0701 (5)0.23172 (6)−0.04493 (7)0.0359 (4)
N1B0.2651 (4)0.12464 (6)0.08249 (6)0.0174 (3)
N2B0.2563 (4)0.20320 (6)0.04135 (7)0.0206 (3)
C1B0.3307 (5)0.04503 (8)0.13130 (8)0.0209 (3)
H1BA0.55730.05300.13510.025*
H1BB0.30860.00910.12210.025*
C2B0.1736 (4)0.07590 (7)0.08467 (7)0.0170 (3)
C3B−0.0419 (5)0.05349 (7)0.04525 (8)0.0199 (3)
H3BA−0.10040.01940.04820.024*
C4B−0.1672 (5)0.08373 (8)0.00115 (8)0.0215 (4)
H4BA−0.31320.0700−0.02600.026*
C5B−0.0763 (5)0.13402 (8)−0.00257 (8)0.0209 (3)
H5BA−0.15730.1546−0.03210.025*
C6B0.1427 (5)0.15320 (7)0.03964 (7)0.0174 (3)
C7B0.2223 (6)0.23918 (8)0.00022 (8)0.0251 (4)
C8B0.3835 (7)0.28927 (9)0.01365 (10)0.0352 (5)
H8BA0.43730.3054−0.02060.053*
H8BB0.57500.28360.03750.053*
H8BC0.24140.31090.03270.053*
Br1C1.07629 (5)0.426384 (8)1.034127 (8)0.02481 (6)
O1C0.3915 (4)0.28054 (6)0.79326 (6)0.0243 (3)
N1C0.9830 (4)0.36463 (6)0.90997 (6)0.0173 (3)
N2C0.7488 (4)0.29499 (6)0.86856 (7)0.0201 (3)
C1C1.2666 (5)0.43125 (8)0.96116 (8)0.0218 (3)
H1CA1.33150.46620.95500.026*
H1CB1.45630.41000.96190.026*
C2C1.0370 (5)0.41486 (7)0.91382 (7)0.0174 (3)
C3C0.8994 (5)0.44982 (7)0.87597 (7)0.0202 (3)
H3CA0.94090.48450.88000.024*
C4C0.6977 (5)0.43147 (8)0.83191 (7)0.0209 (3)
H4CA0.60310.45410.80560.025*
C5C0.6360 (5)0.37991 (7)0.82678 (7)0.0194 (3)
H5CA0.50040.36710.79750.023*
C6C0.7858 (4)0.34775 (7)0.86741 (7)0.0168 (3)
C7C0.5659 (5)0.26431 (7)0.83320 (7)0.0196 (3)
C8C0.5926 (6)0.20884 (8)0.84701 (9)0.0271 (4)
H8CA0.50070.18920.81590.041*
H8CB0.48020.20180.87990.041*
H8CC0.81400.19990.85410.041*
H2NA1.062 (8)0.2645 (13)0.2303 (13)0.045 (9)*
H2NB0.372 (8)0.2135 (12)0.0743 (12)0.039 (8)*
H2NC0.850 (8)0.2790 (12)0.8879 (12)0.033 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br1A0.02104 (9)0.02320 (9)0.01647 (8)−0.00081 (6)−0.00005 (6)−0.00327 (6)
O1A0.0389 (9)0.0208 (7)0.0268 (7)−0.0026 (6)−0.0141 (6)−0.0012 (6)
N1A0.0182 (7)0.0163 (7)0.0152 (6)−0.0005 (5)−0.0012 (5)−0.0013 (5)
N2A0.0228 (8)0.0159 (7)0.0177 (7)0.0005 (6)−0.0055 (6)−0.0011 (5)
C1A0.0198 (8)0.0209 (8)0.0181 (7)−0.0055 (6)0.0007 (6)−0.0008 (6)
C2A0.0166 (8)0.0171 (7)0.0163 (7)−0.0012 (6)0.0014 (6)−0.0006 (6)
C3A0.0233 (9)0.0161 (7)0.0163 (7)0.0004 (6)0.0015 (6)0.0022 (6)
C4A0.0235 (9)0.0201 (8)0.0163 (7)0.0014 (7)−0.0007 (6)0.0018 (6)
C5A0.0238 (9)0.0194 (8)0.0146 (7)0.0004 (6)−0.0032 (6)−0.0006 (6)
C6A0.0187 (8)0.0175 (8)0.0148 (7)0.0001 (6)−0.0005 (6)−0.0019 (6)
C7A0.0234 (9)0.0171 (8)0.0186 (7)−0.0017 (6)−0.0007 (6)−0.0022 (6)
C8A0.0287 (10)0.0177 (8)0.0236 (8)−0.0001 (7)−0.0020 (7)−0.0032 (7)
Br1B0.02550 (10)0.02243 (10)0.01691 (8)0.00067 (7)−0.00224 (6)0.00250 (6)
O1B0.0555 (11)0.0220 (7)0.0271 (7)−0.0039 (7)−0.0182 (7)0.0056 (6)
N1B0.0190 (7)0.0172 (7)0.0156 (6)0.0021 (5)−0.0022 (5)−0.0002 (5)
N2B0.0279 (8)0.0166 (7)0.0163 (6)0.0006 (6)−0.0051 (6)−0.0002 (5)
C1B0.0214 (9)0.0194 (8)0.0218 (8)0.0032 (6)0.0007 (7)0.0027 (6)
C2B0.0175 (8)0.0177 (8)0.0157 (7)0.0022 (6)0.0008 (6)0.0002 (6)
C3B0.0219 (9)0.0194 (8)0.0186 (7)−0.0021 (7)0.0020 (6)−0.0033 (6)
C4B0.0225 (9)0.0252 (9)0.0165 (7)−0.0013 (7)−0.0018 (6)−0.0035 (6)
C5B0.0224 (9)0.0234 (9)0.0161 (7)0.0021 (7)−0.0032 (6)−0.0008 (6)
C6B0.0202 (8)0.0165 (7)0.0154 (7)0.0015 (6)−0.0005 (6)−0.0010 (6)
C7B0.0341 (11)0.0175 (8)0.0224 (8)0.0024 (7)−0.0064 (7)0.0018 (7)
C8B0.0512 (15)0.0194 (9)0.0323 (11)−0.0037 (9)−0.0145 (10)0.0049 (8)
Br1C0.02540 (10)0.03212 (11)0.01646 (8)0.00276 (7)−0.00162 (7)−0.00555 (7)
O1C0.0274 (8)0.0223 (7)0.0217 (6)−0.0020 (5)−0.0090 (5)0.0002 (5)
N1C0.0183 (7)0.0182 (7)0.0150 (6)−0.0008 (5)−0.0012 (5)−0.0007 (5)
N2C0.0254 (8)0.0161 (7)0.0175 (7)−0.0022 (6)−0.0071 (6)0.0018 (5)
C1C0.0219 (9)0.0223 (8)0.0210 (8)−0.0039 (7)−0.0010 (6)−0.0019 (7)
C2C0.0189 (8)0.0189 (8)0.0145 (7)−0.0011 (6)0.0013 (6)−0.0009 (6)
C3C0.0260 (9)0.0181 (8)0.0162 (7)−0.0017 (7)−0.0004 (6)−0.0011 (6)
C4C0.0262 (9)0.0208 (8)0.0152 (7)0.0015 (7)−0.0025 (6)0.0032 (6)
C5C0.0221 (9)0.0203 (8)0.0151 (7)0.0008 (6)−0.0031 (6)0.0006 (6)
C6C0.0186 (8)0.0174 (8)0.0142 (7)0.0000 (6)−0.0009 (6)−0.0006 (6)
C7C0.0210 (9)0.0198 (8)0.0177 (7)−0.0025 (6)−0.0012 (6)−0.0019 (6)
C8C0.0355 (12)0.0187 (9)0.0254 (9)−0.0045 (8)−0.0099 (8)0.0008 (7)

Geometric parameters (Å, °)

Br1A—C1A1.9667 (18)C3B—C4B1.389 (3)
O1A—C7A1.224 (2)C3B—H3BA0.93
N1A—C6A1.335 (2)C4B—C5B1.377 (3)
N1A—C2A1.338 (2)C4B—H4BA0.93
N2A—C7A1.365 (2)C5B—C6B1.404 (3)
N2A—C6A1.391 (2)C5B—H5BA0.93
N2A—H2NA0.74 (3)C7B—C8B1.501 (3)
C1A—C2A1.498 (3)C8B—H8BA0.96
C1A—H1AA0.97C8B—H8BB0.96
C1A—H1AB0.97C8B—H8BC0.96
C2A—C3A1.387 (3)Br1C—C1C1.968 (2)
C3A—C4A1.386 (3)O1C—C7C1.233 (2)
C3A—H3AA0.93N1C—C6C1.336 (2)
C4A—C5A1.380 (3)N1C—C2C1.338 (2)
C4A—H4AA0.93N2C—C7C1.360 (2)
C5A—C6A1.406 (2)N2C—C6C1.392 (2)
C5A—H5AA0.93N2C—H2NC0.73 (3)
C7A—C8A1.494 (3)C1C—C2C1.491 (3)
C8A—H8AA0.96C1C—H1CA0.97
C8A—H8AB0.96C1C—H1CB0.97
C8A—H8AC0.96C2C—C3C1.382 (3)
Br1B—C1B1.9722 (19)C3C—C4C1.385 (3)
O1B—C7B1.225 (2)C3C—H3CA0.93
N1B—C2B1.336 (2)C4C—C5C1.380 (3)
N1B—C6B1.338 (2)C4C—H4CA0.93
N2B—C7B1.360 (2)C5C—C6C1.398 (2)
N2B—C6B1.394 (2)C5C—H5CA0.93
N2B—H2NB0.93 (3)C7C—C8C1.494 (3)
C1B—C2B1.489 (3)C8C—H8CA0.96
C1B—H1BA0.97C8C—H8CB0.96
C1B—H1BB0.97C8C—H8CC0.96
C2B—C3B1.385 (3)
C6A—N1A—C2A118.40 (15)C5B—C4B—H4BA119.9
C7A—N2A—C6A128.33 (16)C3B—C4B—H4BA119.9
C7A—N2A—H2NA113 (3)C4B—C5B—C6B117.78 (17)
C6A—N2A—H2NA118 (3)C4B—C5B—H5BA121.1
C2A—C1A—Br1A111.74 (13)C6B—C5B—H5BA121.1
C2A—C1A—H1AA109.3N1B—C6B—N2B113.14 (16)
Br1A—C1A—H1AA109.3N1B—C6B—C5B122.70 (17)
C2A—C1A—H1AB109.3N2B—C6B—C5B124.16 (16)
Br1A—C1A—H1AB109.3O1B—C7B—N2B122.83 (19)
H1AA—C1A—H1AB107.9O1B—C7B—C8B121.62 (19)
N1A—C2A—C3A123.14 (17)N2B—C7B—C8B115.54 (17)
N1A—C2A—C1A115.46 (16)C7B—C8B—H8BA109.5
C3A—C2A—C1A121.39 (17)C7B—C8B—H8BB109.5
C4A—C3A—C2A117.74 (17)H8BA—C8B—H8BB109.5
C4A—C3A—H3AA121.1C7B—C8B—H8BC109.5
C2A—C3A—H3AA121.1H8BA—C8B—H8BC109.5
C5A—C4A—C3A120.55 (17)H8BB—C8B—H8BC109.5
C5A—C4A—H4AA119.7C6C—N1C—C2C118.06 (16)
C3A—C4A—H4AA119.7C7C—N2C—C6C129.32 (16)
C4A—C5A—C6A117.35 (17)C7C—N2C—H2NC109 (2)
C4A—C5A—H5AA121.3C6C—N2C—H2NC121 (2)
C6A—C5A—H5AA121.3C2C—C1C—Br1C111.62 (13)
N1A—C6A—N2A112.72 (16)C2C—C1C—H1CA109.3
N1A—C6A—C5A122.82 (17)Br1C—C1C—H1CA109.3
N2A—C6A—C5A124.46 (16)C2C—C1C—H1CB109.3
O1A—C7A—N2A122.80 (18)Br1C—C1C—H1CB109.3
O1A—C7A—C8A122.20 (17)H1CA—C1C—H1CB108.0
N2A—C7A—C8A114.99 (17)N1C—C2C—C3C123.20 (17)
C7A—C8A—H8AA109.5N1C—C2C—C1C115.60 (16)
C7A—C8A—H8AB109.5C3C—C2C—C1C121.18 (17)
H8AA—C8A—H8AB109.5C2C—C3C—C4C117.81 (18)
C7A—C8A—H8AC109.5C2C—C3C—H3CA121.1
H8AA—C8A—H8AC109.5C4C—C3C—H3CA121.1
H8AB—C8A—H8AC109.5C5C—C4C—C3C120.48 (17)
C2B—N1B—C6B118.02 (16)C5C—C4C—H4CA119.8
C7B—N2B—C6B127.83 (16)C3C—C4C—H4CA119.8
C7B—N2B—H2NB115.3 (19)C4C—C5C—C6C117.26 (17)
C6B—N2B—H2NB116.8 (19)C4C—C5C—H5CA121.4
C2B—C1B—Br1B111.85 (13)C6C—C5C—H5CA121.4
C2B—C1B—H1BA109.2N1C—C6C—N2C112.20 (16)
Br1B—C1B—H1BA109.2N1C—C6C—C5C123.19 (17)
C2B—C1B—H1BB109.2N2C—C6C—C5C124.62 (16)
Br1B—C1B—H1BB109.2O1C—C7C—N2C123.35 (18)
H1BA—C1B—H1BB107.9O1C—C7C—C8C122.47 (17)
N1B—C2B—C3B123.66 (17)N2C—C7C—C8C114.18 (16)
N1B—C2B—C1B115.86 (16)C7C—C8C—H8CA109.5
C3B—C2B—C1B120.41 (17)C7C—C8C—H8CB109.5
C2B—C3B—C4B117.55 (18)H8CA—C8C—H8CB109.5
C2B—C3B—H3BA121.2C7C—C8C—H8CC109.5
C4B—C3B—H3BA121.2H8CA—C8C—H8CC109.5
C5B—C4B—C3B120.29 (18)H8CB—C8C—H8CC109.5
C6A—N1A—C2A—C3A0.4 (3)C2B—N1B—C6B—N2B−179.55 (16)
C6A—N1A—C2A—C1A−178.19 (16)C2B—N1B—C6B—C5B0.1 (3)
Br1A—C1A—C2A—N1A−71.41 (19)C7B—N2B—C6B—N1B168.3 (2)
Br1A—C1A—C2A—C3A110.00 (18)C7B—N2B—C6B—C5B−11.3 (3)
N1A—C2A—C3A—C4A−0.5 (3)C4B—C5B—C6B—N1B0.3 (3)
C1A—C2A—C3A—C4A177.93 (17)C4B—C5B—C6B—N2B179.93 (19)
C2A—C3A—C4A—C5A0.3 (3)C6B—N2B—C7B—O1B2.6 (4)
C3A—C4A—C5A—C6A0.1 (3)C6B—N2B—C7B—C8B−177.6 (2)
C2A—N1A—C6A—N2A179.68 (16)C6C—N1C—C2C—C3C−0.1 (3)
C2A—N1A—C6A—C5A0.0 (3)C6C—N1C—C2C—C1C−178.23 (17)
C7A—N2A—C6A—N1A178.45 (19)Br1C—C1C—C2C—N1C−73.37 (19)
C7A—N2A—C6A—C5A−1.9 (3)Br1C—C1C—C2C—C3C108.44 (18)
C4A—C5A—C6A—N1A−0.2 (3)N1C—C2C—C3C—C4C−0.4 (3)
C4A—C5A—C6A—N2A−179.84 (18)C1C—C2C—C3C—C4C177.65 (18)
C6A—N2A—C7A—O1A−2.9 (3)C2C—C3C—C4C—C5C0.6 (3)
C6A—N2A—C7A—C8A176.72 (18)C3C—C4C—C5C—C6C−0.3 (3)
C6B—N1B—C2B—C3B−0.4 (3)C2C—N1C—C6C—N2C−179.58 (17)
C6B—N1B—C2B—C1B176.64 (16)C2C—N1C—C6C—C5C0.4 (3)
Br1B—C1B—C2B—N1B78.77 (19)C7C—N2C—C6C—N1C178.90 (19)
Br1B—C1B—C2B—C3B−104.14 (18)C7C—N2C—C6C—C5C−1.1 (3)
N1B—C2B—C3B—C4B0.2 (3)C4C—C5C—C6C—N1C−0.2 (3)
C1B—C2B—C3B—C4B−176.68 (17)C4C—C5C—C6C—N2C179.76 (19)
C2B—C3B—C4B—C5B0.3 (3)C6C—N2C—C7C—O1C−1.6 (3)
C3B—C4B—C5B—C6B−0.5 (3)C6C—N2C—C7C—C8C178.7 (2)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2A–C6A/N1A and C2C–C6C/N1C pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2A—H2NA···O1Ci0.74 (3)2.29 (3)3.022 (2)172 (4)
N2B—H2NB···O1A0.93 (3)1.97 (3)2.885 (2)166 (3)
N2C—H2NC···O1Bii0.73 (3)2.18 (3)2.900 (2)169 (3)
C1B—H1BA···Br1Biii0.972.853.716 (2)149
C8B—H8BB···O1A0.962.503.159 (3)125
C8C—H8CA···N1Aiv0.962.503.427 (3)162
C1A—H1AB···Cg1iii0.972.883.612 (2)133
C1C—H1CB···Cg2iii0.972.813.447 (2)124

Symmetry codes: (i) x+1, −y+1/2, z−1/2; (ii) x+1, y, z+1; (iii) x+1, y, z; (iv) x−1, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5177).

References

  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Ghosh, K. & Masanta, G. (2006). Tetrahedron Lett.47, 9233–9237.
  • Goswami, S., Dey, S., Jana, S. & Adak, A. K. (2004). Chem. Lett.33, 916–917.
  • Goswami, S., Ghosh, K. & Dasgupta, S. (2000). J. Org. Chem.65, 1907–1914. [PubMed]
  • Goswami, S., Ghosh, K., Mukherjee, R., Adak, A. K. & Mahapatra, A. K. (2001). J. Heterocycl. Chem.38, 173–178.
  • Goswami, S., Mukherjee, R. & Roy, J. (2005). Org. Lett.7, 1283–1285. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography