PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2618.
Published online 2010 September 25. doi:  10.1107/S1600536810037281
PMCID: PMC2983234

3,9-Diisopropyl-2,4,8,10-tetra­thia­spiro­[5.5]undeca­ne

Abstract

The mol­ecule of the title compound, C13H24S4, has C2 symmetry and it crystallizes as a racemate. The structure displays two six-membered rings exhibiting chair conformations, with the isopropyl substituents in equatorial positions. In the crystal structure, weak inter­molecular C—H(...)S inter­actions are observed, leading to a channel-like arrangement along the c axis.

Related literature

For background to the chemistry of spirans, see: Cismaş et al. (2005 [triangle]); Eliel & Wilen (1994 [triangle]); Grosu et al. (1995 [triangle], 1997 [triangle]); Terec et al. (2001 [triangle], 2004 [triangle]). For other studies regarding the synthesis and stereochemistry of spiranes bearing 1,3-dithiane units, see: Backer & Evenhuis (1937 [triangle]); Gâz et al. (2008 [triangle]); Mitkin et al. (2001 [triangle]). For the crystal structure of a spiran beaing 1,3-dithiane unit atoms, see: Zhou et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2618-scheme1.jpg

Experimental

Crystal data

  • C13H24S4
  • M r = 308.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2618-efi1.jpg
  • a = 16.701 (5) Å
  • b = 10.241 (3) Å
  • c = 12.063 (3) Å
  • β = 128.418 (4)°
  • V = 1616.5 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.57 mm−1
  • T = 297 K
  • 0.32 × 0.31 × 0.28 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.839, T max = 0.857
  • 7606 measured reflections
  • 1432 independent reflections
  • 1311 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.153
  • S = 1.27
  • 1432 reflections
  • 80 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg & Putz, 2004 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037281/jh2201sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037281/jh2201Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by CNCSIS–UEFISCSU, project number PNII–IDEI515/2007. We also thank the National Centre for X-Ray Diffraction, Cluj-Napoca, for support with the solid-state structure determination.

supplementary crystallographic information

Comment

Despite the rich literature dealing with spiro compounds (Cismaş et al., 2005; Eliel & Wilen, 1994; Grosu et al., 1995, 1997; Terec et al., 2001, 2004) new papers were written recently especially including spiro derivatives having sulfur or selenium heteroatoms. Only few spirans bearing 1,3 dithiane units were reported (Backer & Evenhuis, 1937; Gâz et al., 2008; Mitkin et al., 2001) and only 2 crystals were obtained so far (Zhou et al., 2001). The title compound (Fig. 1) exhibits a C2 symmetry unit with chair conformation for both six-membered rings.

Due to the space arrangement there are differences between positions 2, 4 and 2', 4'. Due to these differencies positions 4 and 4' which are oriented towards the other 1,3-dithiane ring are named methylene inside, while the other two CH2 groups (positions 2 and 2') are oriented in opposite direction and they are named methylene outside groups.

In the crystal packing (Fig. 2 and Fig. 3) the sulfur atom from a neighbour molecule is hydrogen-bonded (weak interactions) via a intermolecular C7—H7c ···S1 connection (Table 1).

These weak interactions stabilize the lattice and form a three-dimensional network as a channel-like arrangement along the c axis.

Experimental

The synthesis of I has been described elsewhere (Gâz et al., 2008). Crystal were obtained from dichloromethane, by slow evaporation at room temperature.

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso = 1.5Ueq (C) for H. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
ORTEP digram of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
A view of the molecular structure exhibiting the hydrogen bonding interactions.
Fig. 3.
The crystal packing viewed along c axis, exhibiting channel-like arrangement formed most probably by weak interaction between the methyl group H atoms and the sulfur atom from a neighbour molecule.

Crystal data

C13H24S4F(000) = 664
Mr = 308.56Dx = 1.268 Mg m3
Monoclinic, C2/cMelting point = 416–418 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.701 (5) ÅCell parameters from 3441 reflections
b = 10.241 (3) Åθ = 2.5–28.1°
c = 12.063 (3) ŵ = 0.57 mm1
β = 128.418 (4)°T = 297 K
V = 1616.5 (8) Å3Block, colourless
Z = 40.32 × 0.31 × 0.28 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer1432 independent reflections
Radiation source: fine-focus sealed tube1311 reflections with I > 2σ(I)
graphiteRint = 0.035
[var phi] and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −19→19
Tmin = 0.839, Tmax = 0.857k = −12→12
7606 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.27w = 1/[σ2(Fo2) + (0.0592P)2 + 2.605P] where P = (Fo2 + 2Fc2)/3
1432 reflections(Δ/σ)max < 0.001
80 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.50000.7036 (5)1.25000.0439 (11)
C20.4969 (3)0.6137 (4)1.1462 (4)0.0596 (11)
H2A0.43570.56061.09810.071*
H2B0.55510.55511.20010.071*
C30.3816 (3)0.7866 (4)0.9229 (4)0.0486 (9)
H30.32450.72600.88420.058*
C40.4026 (3)0.7860 (4)1.1697 (4)0.0484 (9)
H4A0.40240.83531.23820.058*
H4B0.34440.72731.12180.058*
C50.3655 (3)0.8601 (4)0.7999 (4)0.0585 (11)
H50.42430.91790.83880.070*
C60.3597 (5)0.7656 (6)0.6974 (5)0.103 (2)
H6A0.29970.71230.65290.154*
H6B0.41930.71100.74830.154*
H6C0.35640.81400.62660.154*
C70.2696 (4)0.9437 (6)0.7207 (5)0.0846 (16)
H7A0.25710.97970.63770.127*
H7B0.27861.01320.78090.127*
H7C0.21240.89080.69340.127*
S10.49848 (9)0.69295 (11)1.01407 (11)0.0627 (4)
S20.38431 (7)0.89852 (9)1.04130 (10)0.0529 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.050 (3)0.036 (3)0.041 (3)0.0000.026 (2)0.000
C20.076 (3)0.050 (2)0.049 (2)0.016 (2)0.037 (2)0.0054 (18)
C30.047 (2)0.048 (2)0.044 (2)−0.0022 (16)0.0251 (18)0.0052 (16)
C40.040 (2)0.055 (2)0.046 (2)−0.0010 (16)0.0251 (17)−0.0052 (17)
C50.055 (2)0.061 (2)0.050 (2)−0.0053 (19)0.028 (2)0.0109 (19)
C60.139 (5)0.112 (5)0.061 (3)0.014 (4)0.064 (4)0.018 (3)
C70.062 (3)0.102 (4)0.068 (3)0.014 (3)0.029 (2)0.039 (3)
S10.0744 (8)0.0695 (7)0.0527 (6)0.0285 (6)0.0437 (6)0.0142 (5)
S20.0497 (6)0.0444 (6)0.0520 (6)0.0097 (4)0.0254 (5)0.0033 (4)

Geometric parameters (Å, °)

C1—C4i1.529 (4)C4—H4A0.9700
C1—C41.529 (4)C4—H4B0.9700
C1—C21.529 (5)C5—C71.520 (6)
C1—C2i1.529 (5)C5—C61.524 (7)
C2—S11.803 (4)C5—H50.9800
C2—H2A0.9700C6—H6A0.9600
C2—H2B0.9700C6—H6B0.9600
C3—C51.531 (5)C6—H6C0.9600
C3—S11.809 (4)C7—H7A0.9600
C3—S21.810 (4)C7—H7B0.9600
C3—H30.9800C7—H7C0.9600
C4—S21.798 (4)
C4i—C1—C4113.0 (4)S2—C4—H4B108.2
C4i—C1—C2109.4 (2)H4A—C4—H4B107.4
C4—C1—C2109.4 (2)C7—C5—C6109.7 (4)
C4i—C1—C2i109.4 (2)C7—C5—C3111.6 (4)
C4—C1—C2i109.4 (2)C6—C5—C3111.0 (4)
C2—C1—C2i106.0 (4)C7—C5—H5108.2
C1—C2—S1116.2 (3)C6—C5—H5108.2
C1—C2—H2A108.2C3—C5—H5108.2
S1—C2—H2A108.2C5—C6—H6A109.5
C1—C2—H2B108.2C5—C6—H6B109.5
S1—C2—H2B108.2H6A—C6—H6B109.5
H2A—C2—H2B107.4C5—C6—H6C109.5
C5—C3—S1108.9 (3)H6A—C6—H6C109.5
C5—C3—S2110.9 (3)H6B—C6—H6C109.5
S1—C3—S2111.59 (19)C5—C7—H7A109.5
C5—C3—H3108.5C5—C7—H7B109.5
S1—C3—H3108.5H7A—C7—H7B109.5
S2—C3—H3108.5C5—C7—H7C109.5
C1—C4—S2116.3 (2)H7A—C7—H7C109.5
C1—C4—H4A108.2H7B—C7—H7C109.5
S2—C4—H4A108.2C2—S1—C399.99 (18)
C1—C4—H4B108.2C4—S2—C3100.49 (17)
C4i—C1—C2—S1−59.6 (4)S1—C3—C5—C658.7 (4)
C4—C1—C2—S164.8 (4)S2—C3—C5—C6−178.1 (3)
C2i—C1—C2—S1−177.4 (4)C1—C2—S1—C3−61.4 (3)
C4i—C1—C4—S258.00 (19)C5—C3—S1—C2−178.1 (3)
C2—C1—C4—S2−64.2 (4)S2—C3—S1—C259.1 (2)
C2i—C1—C4—S2−179.8 (2)C1—C4—S2—C360.4 (3)
S1—C3—C5—C7−178.6 (3)C5—C3—S2—C4179.5 (3)
S2—C3—C5—C7−55.5 (4)S1—C3—S2—C4−58.9 (2)

Symmetry codes: (i) −x+1, y, −z+5/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7C···S1ii0.962.933.827 (6)156 (1)

Symmetry codes: (ii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2201).

References

  • Backer, H. J. & Evenhuis, N. (1937). Recl Trav. Chim. Pays-Bas, 56, 681–690.
  • Brandenburg, K. & Putz, H. (2004). DIAMOND University of Bonn, Germany.
  • Bruker (2000). SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem.9, 1287–1314.
  • Eliel, E. L. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds New York: John Wiley & Sons.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gâz, Ş. A., Condamine, E., Bogdan, N., Terec, A., Bogdan, E., Ramondenc, Y. & Grosu, I. (2008). Tetrahedron, 64, 3–12.
  • Grosu, I., Mager, S. & Plé, G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1351–1357.
  • Grosu, I., Plé, G., Mager, S., Martinez, R., Mesaroş, C. & Camacho, B. del C. (1997). Tetrahedron, 53, 6215–6232.
  • Mitkin, O. D., Wan, Y., Kurchan, A. N. & Kutateladze, A. G. (2001). Synthesis, pp. 1133–1142.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Terec, A., Grosu, I., Condamine, E., Breau, L., Plé, G., Ramondenc, Y., Rochon, F. D., Peulon-Agasse, V. & Opriş, D. (2004). Tetrahedron, 60, 3173–3189.
  • Terec, A., Grosu, I., Muntean, L., Toupet, L., Plé, G., Socaci, C. & Mager, S. (2001). Tetrahedron, 57, 8751–8758.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Zhou, Z.-R., Xu, W., Xia, Y., Wang, Q.-R., Ding, Z.-B., Chen, M.-Q., Hua, Z.-Y. & Tao, F.-G. (2001). Acta Cryst. C57, 471–472. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography