PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1316–m1317.
Published online 2010 September 30. doi:  10.1107/S160053681003059X
PMCID: PMC2983232

Bis(9-amino­acridinium) bis­(pyridine-2,6-dicarboxyl­ato)cuprate(II) trihydrate

Abstract

The asymmetric unit of the title compound, (C13H11N2)2[Cu(C7H3NO4)2]·3H2O, consists of one [Cu(pydc)2]2− dianion (pydc is pyridine-2,6-dicarboxyl­ate), two 9-amino­acridinum monocations and three uncoordinated water mol­ecules. The CuII atom is coordinated by two pydc dianions acting as tridentate ligands, and forming five-membered chelate rings with copper(II) as the central atom. The CuII atom is surrounded by four O atoms in the equatorial plane and two pyridine N atoms in axial positions, resulting in a distorted octa­hedral coordination geometry. In the crystal, there are two types of O—H(...)O and N—H(...)O hydrogen-bonding synthons linking the anionic and cationic fragments and the water mol­ecules, namely R 4 4(16), and R 4 2(8). There are also weak C—H(...)O hydrogen bonds, π–π stacking inter­actions [the shortest centroid–centroid distance is 3.350 (2) Å], and a C—O(...)π inter­action [O(...)centroid distance = 3.564 (2) Å], which connect the various components into a three-dimensional network.

Related literature

For complexes containing a copper(II) atom, pyridine-2,6-dicarboxlic acid and various bases, see: Yenikaya et al. (2009 [triangle]); Zafer Yeşilel et al. (2010 [triangle]); Du et al. (2006 [triangle]); Aghabozorg et al. (2006 [triangle], 2009 [triangle]). For the crystal structure of (aacrH)2[Ni(pydc)2]·3H2O, (aacr = 9-amino­acridine), see: Derikvand & Olmstead (2010 [triangle]). For graph-set analysis, see: Bernstein et al. (1995 [triangle]). An independent determination of the title compound is reported in the following paper by Aghabozorg et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1316-scheme1.jpg

Experimental

Crystal data

  • (C13H11N2)2[Cu(C7H3NO4)2]·3H2O
  • M r = 838.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1316-efi2.jpg
  • a = 10.8760 (16) Å
  • b = 13.283 (2) Å
  • c = 13.9820 (19) Å
  • α = 102.056 (12)°
  • β = 103.785 (11)°
  • γ = 105.573 (12)°
  • V = 1807.6 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 223 K
  • 0.25 × 0.19 × 0.12 mm

Data collection

  • Stoe IPDS 2 diffractometer
  • Absorption correction: multi-scan (MULscanABS; Spek, 2009 [triangle]) T min = 0.845, T max = 0.920
  • 19456 measured reflections
  • 6819 independent reflections
  • 4572 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.073
  • S = 0.87
  • 6819 reflections
  • 571 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: X-AREA (Stoe & Cie, 2006 [triangle]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003059X/vm2038sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003059X/vm2038Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HSE thanks the staff of the X-ray Application Lab, CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

supplementary crystallographic information

Comment

A number of complexes containing a copper(II) atom, pyridine-2,6-dicarboxlic acid and various bases have been reported (Yenikaya et al., 2009; Zafer Yeşilel et al., 2010; Du et al., 2006; Aghabozorg et al., 2006, 2009). Herein, we report on the crystal structure of the title compound, that consists of a discrete [Cu(pydc)2]2- dianion, two 9-aminoacridinum monocations and three uncoordinated water molecules (Fig. 1).

The copper(II) atom is coordinated by two pyridine-2,6-dicarboxylate anions (pydc) acting as tridentate ligands, forming five membered chelate rings. The metal center is surrounded by four oxygen atoms (O1, O3, O5 and O7) in the equatorial plane and by two pyridine nitrogen atoms (N1 and N2) in axial positions. In the anionic complex the N1—Cu1—N2 angle of 174.13 (8)° deviates significantly from linearity. The coordination geometry around the copper(II) atom is distorted octahedral (CuN2O4), and the valence angles vary considerabley from the required 90° and 180° in the basal plane i.e. 75.13 (8) - 159.50 (8) °. The (pydc)2– ligands are almost orthogonal, with a dihedral angle involving the pyridine ring mean planes of 83.78 (13)°.

In the crystal two types of O–H···O and N–H···O hydrogen bond synthons are found namely, i [R44 (16)], and ii [R24(8)] (Bernstein et al., 1995) [Table 1]. As shown in Fig. 2 they link the anionic and cationic fragments and the lattice water molecules to form a chain propagating in (110). Other intermolecular interactions are also present and include weak C–H···O hydrogen bonds, π–π stacking interactions [i-vii,ix in Fig. 3; the shortest centroid-to-centroid distance is 3.350 (2) Å], and a C–O···π interaction [viii in Fig. 3; O···centroid distance = 3.564 (2) Å], as shown in Fig. 3.

The crystal structure of the title compound is similar to that of (aacH)2[Ni(pydc)2]. 3H2O, (aacr = 9-aminoacridine) (Derikvand et al. 2010).

Experimental

An aqueous solution of copper(II) nitrate hexahydrate (0.5 mmol, 145 mg) in distilled water (5 ml) was added to a methanolic solution of pyridine-2,6-dicarboxylic acid (1 mmol, 167 mg) in distilled water (20 ml) and 9-aminoacridine (1 mmol, 194 mg) in methanol (5 ml) under stirring at 353 K, in a 1:2:2 molar ratio. The pale-green precipitate produced was dissolved in H2O/DMSO with the volume ratio of 1:4 (2/8 ml). Green plate-like crystals, suitable for X-ray characterization, were obtained after 3 days at room temperature.

Refinement

The NH, NH2 and water H-atoms were located in difference Fourier maps and were refined freely: N—H = 0.82 (3) - 0.93 (3) Å, O—H = 0.84 (4) - 0.89 (5) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.
Fig. 2.
The one dimensional chain generated by the N—H···O and O—H···O hydrogen bonds (dashed lines) involving the anionic and cationic fragments and the water molecules of crystallization [graph-set ...
Fig. 3.
A view of the extensive π–π stacking interactions (dashed line) involving the aromatic rings of the 9-aminoacridinium ions, and the C–O···π interaction (viii, dashed line), involving the ...

Crystal data

(C13H11N2)2[Cu(C7H3NO4)2]·3H2OZ = 2
Mr = 838.27F(000) = 866
Triclinic, P1Dx = 1.540 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8760 (16) ÅCell parameters from 10347 reflections
b = 13.283 (2) Åθ = 1.6–26.1°
c = 13.9820 (19) ŵ = 0.68 mm1
α = 102.056 (12)°T = 223 K
β = 103.785 (11)°Plate, green
γ = 105.573 (12)°0.25 × 0.19 × 0.12 mm
V = 1807.6 (5) Å3

Data collection

Stoe IPDS 2 diffractometer6819 independent reflections
Radiation source: fine-focus sealed tube4572 reflections with I > 2σ(I)
graphiteRint = 0.060
[var phi] + ω scansθmax = 25.8°, θmin = 1.6°
Absorption correction: multi-scan (MULscanABS; Spek, 2009)h = −13→13
Tmin = 0.845, Tmax = 0.920k = −16→15
19456 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.87w = 1/[σ2(Fo2) + (0.0307P)2] where P = (Fo2 + 2Fc2)/3
6819 reflections(Δ/σ)max = 0.001
571 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.85975 (4)0.23585 (3)0.58073 (2)0.0256 (1)
O10.7445 (2)0.20489 (15)0.67478 (13)0.0360 (6)
O20.5978 (2)0.06732 (17)0.70104 (14)0.0433 (7)
O30.95569 (19)0.20720 (14)0.47238 (12)0.0323 (6)
O40.9737 (2)0.07042 (15)0.35947 (13)0.0382 (6)
O50.69468 (19)0.28229 (14)0.47403 (13)0.0367 (6)
O60.64662 (19)0.43248 (15)0.45922 (13)0.0337 (6)
O71.06223 (19)0.28284 (15)0.70913 (12)0.0332 (6)
O81.2315 (2)0.43696 (17)0.80731 (14)0.0464 (7)
N10.7888 (2)0.08032 (17)0.53178 (14)0.0257 (7)
N20.9302 (2)0.39729 (16)0.61666 (14)0.0223 (6)
C10.6994 (3)0.0270 (2)0.57121 (18)0.0276 (8)
C20.6431 (3)−0.0846 (2)0.5344 (2)0.0363 (9)
C30.6827 (3)−0.1405 (2)0.4588 (2)0.0392 (10)
C40.7773 (3)−0.0835 (2)0.42055 (19)0.0323 (9)
C50.8276 (3)0.0285 (2)0.45818 (17)0.0262 (8)
C60.6768 (3)0.1051 (2)0.65601 (18)0.0312 (9)
C70.9271 (3)0.1077 (2)0.42669 (17)0.0271 (8)
C80.8614 (2)0.45192 (19)0.56787 (16)0.0210 (7)
C90.9172 (3)0.5622 (2)0.58274 (18)0.0258 (8)
C101.0461 (3)0.6180 (2)0.64911 (18)0.0286 (9)
C111.1150 (3)0.5620 (2)0.70013 (18)0.0269 (8)
C121.0549 (3)0.4513 (2)0.68252 (17)0.0237 (8)
C130.7221 (3)0.3827 (2)0.49439 (17)0.0253 (8)
C141.1228 (3)0.3841 (2)0.73790 (18)0.0282 (9)
N30.1654 (2)0.17225 (18)0.11602 (17)0.0297 (8)
N40.0470 (2)0.1067 (2)−0.19910 (16)0.0295 (8)
C150.1780 (3)0.0814 (2)0.05922 (18)0.0270 (8)
C160.2329 (3)0.0150 (2)0.1093 (2)0.0325 (9)
C170.2452 (3)−0.0764 (2)0.0543 (2)0.0382 (10)
C180.2056 (3)−0.1044 (2)−0.0542 (2)0.0360 (9)
C190.1536 (3)−0.0401 (2)−0.1042 (2)0.0292 (8)
C200.1369 (2)0.0542 (2)−0.05001 (17)0.0233 (8)
C210.0824 (2)0.1246 (2)−0.09795 (17)0.0240 (8)
C220.0633 (2)0.2156 (2)−0.03506 (17)0.0232 (8)
C23−0.0057 (3)0.2806 (2)−0.07617 (19)0.0283 (8)
C24−0.0252 (3)0.3638 (2)−0.0140 (2)0.0355 (10)
C250.0242 (3)0.3871 (2)0.0935 (2)0.0400 (10)
C260.0888 (3)0.3254 (2)0.1365 (2)0.0346 (9)
C270.1076 (3)0.2375 (2)0.07306 (18)0.0271 (8)
N50.3572 (2)0.39380 (17)−0.02097 (16)0.0264 (7)
N60.5174 (3)0.3113 (2)0.23769 (18)0.0355 (8)
C280.3934 (2)0.3036 (2)−0.03271 (18)0.0245 (8)
C290.3761 (3)0.2399 (2)−0.13218 (18)0.0299 (9)
C300.4114 (3)0.1489 (2)−0.1451 (2)0.0343 (9)
C310.4661 (3)0.1165 (2)−0.0593 (2)0.0334 (9)
C320.4863 (3)0.1782 (2)0.03764 (19)0.0302 (9)
C330.4506 (2)0.2735 (2)0.05425 (18)0.0252 (8)
C340.4677 (3)0.3401 (2)0.15506 (18)0.0266 (8)
C350.4295 (3)0.4357 (2)0.16326 (19)0.0291 (8)
C360.4400 (3)0.5062 (2)0.2583 (2)0.0382 (10)
C370.3979 (3)0.5932 (2)0.2626 (2)0.0414 (10)
C380.3422 (3)0.6171 (2)0.1720 (2)0.0375 (10)
C390.3303 (3)0.5512 (2)0.0784 (2)0.0304 (9)
C400.3721 (3)0.4599 (2)0.07257 (17)0.0247 (8)
O1W0.5825 (3)0.1218 (2)0.28006 (17)0.0486 (8)
O2W0.3854 (3)0.36532 (18)0.47401 (17)0.0440 (8)
O3W0.1873 (3)0.2025 (2)0.31711 (16)0.0540 (9)
H20.57860−0.122600.560300.0440*
H30.64550−0.217000.433200.0470*
H40.80620−0.120600.370100.0390*
H90.867900.599400.548000.0310*
H101.086000.693100.659200.0340*
H111.202200.598700.746500.0320*
H160.261300.034200.181600.0390*
H170.28020−0.121400.088400.0460*
H180.21510−0.16760−0.092100.0430*
H190.12840−0.05930−0.176500.0350*
H23−0.038700.26600−0.148000.0340*
H24−0.071900.40600−0.042700.0430*
H250.012500.446200.136200.0480*
H260.120800.341300.208500.0420*
H420.054 (3)0.053 (2)−0.241 (2)0.039 (8)*
H430.033 (3)0.162 (3)−0.226 (2)0.052 (9)*
H490.182 (3)0.182 (2)0.180 (2)0.048 (9)*
H290.339800.26070−0.189900.0360*
H300.399400.10690−0.211800.0410*
H310.488600.05240−0.069100.0400*
H320.524700.156900.094400.0360*
H360.477200.491900.319800.0460*
H370.405900.638400.326900.0500*
H380.313300.678100.175700.0450*
H390.293800.567300.017800.0360*
H400.538 (3)0.247 (2)0.2337 (19)0.031 (7)*
H450.536 (3)0.358 (3)0.296 (2)0.047 (9)*
H460.317 (3)0.401 (2)−0.075 (2)0.040 (9)*
H480.620 (4)0.168 (3)0.341 (3)0.075 (13)*
H500.525 (5)0.062 (4)0.283 (3)0.095 (16)*
H410.372 (4)0.427 (3)0.494 (3)0.064 (12)*
H510.463 (5)0.375 (3)0.465 (3)0.085 (15)*
H440.247 (4)0.254 (3)0.368 (3)0.076 (13)*
H470.126 (4)0.170 (3)0.338 (2)0.052 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0360 (2)0.0211 (2)0.0214 (2)0.0101 (2)0.0108 (1)0.0067 (1)
O10.0498 (13)0.0265 (10)0.0348 (10)0.0111 (10)0.0216 (9)0.0079 (8)
O20.0493 (14)0.0480 (13)0.0409 (11)0.0142 (11)0.0268 (11)0.0181 (10)
O30.0482 (13)0.0225 (10)0.0300 (9)0.0115 (9)0.0195 (9)0.0077 (8)
O40.0485 (13)0.0350 (11)0.0304 (9)0.0109 (10)0.0210 (9)0.0023 (8)
O50.0386 (12)0.0245 (11)0.0364 (10)0.0078 (9)−0.0011 (9)0.0054 (8)
O60.0309 (11)0.0356 (11)0.0324 (9)0.0162 (9)0.0014 (8)0.0087 (8)
O70.0445 (12)0.0312 (11)0.0288 (9)0.0182 (10)0.0083 (9)0.0151 (8)
O80.0397 (13)0.0500 (13)0.0382 (11)0.0093 (11)−0.0084 (10)0.0211 (10)
N10.0330 (14)0.0251 (12)0.0204 (10)0.0107 (10)0.0074 (10)0.0092 (9)
N20.0285 (13)0.0231 (11)0.0173 (9)0.0108 (10)0.0084 (9)0.0056 (8)
C10.0307 (16)0.0282 (14)0.0244 (12)0.0087 (12)0.0067 (12)0.0122 (11)
C20.0424 (19)0.0287 (15)0.0351 (15)0.0047 (13)0.0123 (14)0.0130 (12)
C30.052 (2)0.0208 (14)0.0337 (15)0.0023 (14)0.0080 (14)0.0046 (12)
C40.0439 (18)0.0249 (14)0.0244 (13)0.0108 (13)0.0087 (12)0.0026 (11)
C50.0333 (16)0.0249 (14)0.0194 (12)0.0113 (12)0.0054 (11)0.0059 (10)
C60.0363 (17)0.0367 (16)0.0246 (13)0.0147 (14)0.0105 (12)0.0130 (12)
C70.0362 (17)0.0272 (14)0.0190 (12)0.0121 (13)0.0077 (11)0.0082 (10)
C80.0255 (14)0.0253 (13)0.0166 (11)0.0130 (11)0.0086 (10)0.0068 (10)
C90.0316 (16)0.0260 (14)0.0254 (12)0.0152 (12)0.0091 (12)0.0116 (11)
C100.0358 (17)0.0238 (14)0.0272 (13)0.0090 (12)0.0110 (12)0.0092 (11)
C110.0258 (15)0.0265 (14)0.0225 (12)0.0045 (12)0.0032 (11)0.0056 (10)
C120.0278 (15)0.0287 (14)0.0162 (11)0.0103 (12)0.0085 (11)0.0072 (10)
C130.0289 (15)0.0268 (14)0.0206 (12)0.0099 (12)0.0077 (11)0.0069 (10)
C140.0355 (18)0.0335 (16)0.0244 (13)0.0168 (14)0.0132 (13)0.0153 (12)
N30.0279 (14)0.0378 (14)0.0209 (11)0.0070 (11)0.0071 (10)0.0095 (10)
N40.0405 (15)0.0293 (13)0.0200 (11)0.0156 (12)0.0081 (10)0.0066 (10)
C150.0163 (14)0.0335 (15)0.0301 (13)0.0035 (12)0.0079 (11)0.0128 (12)
C160.0237 (16)0.0433 (17)0.0334 (14)0.0087 (13)0.0092 (12)0.0203 (13)
C170.0228 (16)0.0460 (18)0.0539 (18)0.0124 (14)0.0101 (14)0.0325 (15)
C180.0275 (16)0.0312 (16)0.0531 (17)0.0115 (13)0.0147 (14)0.0153 (13)
C190.0247 (15)0.0277 (14)0.0335 (14)0.0077 (12)0.0076 (12)0.0089 (11)
C200.0168 (14)0.0279 (14)0.0233 (12)0.0050 (11)0.0049 (10)0.0085 (10)
C210.0188 (14)0.0257 (13)0.0233 (12)0.0024 (11)0.0073 (11)0.0045 (10)
C220.0202 (14)0.0246 (13)0.0229 (12)0.0040 (11)0.0081 (11)0.0059 (10)
C230.0302 (16)0.0267 (14)0.0289 (13)0.0090 (12)0.0113 (12)0.0081 (11)
C240.0381 (18)0.0313 (16)0.0433 (16)0.0149 (14)0.0195 (14)0.0118 (13)
C250.050 (2)0.0316 (16)0.0405 (16)0.0132 (15)0.0256 (15)0.0023 (13)
C260.0396 (18)0.0324 (15)0.0276 (13)0.0051 (14)0.0155 (13)0.0035 (12)
C270.0228 (15)0.0305 (14)0.0257 (12)0.0041 (12)0.0094 (11)0.0079 (11)
N50.0263 (13)0.0301 (13)0.0222 (11)0.0090 (10)0.0043 (10)0.0107 (10)
N60.0403 (16)0.0389 (15)0.0252 (13)0.0163 (13)0.0029 (11)0.0096 (12)
C280.0183 (14)0.0267 (14)0.0282 (12)0.0060 (11)0.0076 (11)0.0092 (11)
C290.0273 (16)0.0387 (16)0.0246 (12)0.0120 (13)0.0078 (11)0.0103 (11)
C300.0324 (17)0.0392 (17)0.0297 (14)0.0126 (14)0.0092 (12)0.0065 (12)
C310.0280 (16)0.0354 (16)0.0407 (15)0.0142 (13)0.0128 (13)0.0122 (13)
C320.0236 (15)0.0363 (16)0.0322 (14)0.0113 (13)0.0078 (12)0.0126 (12)
C330.0171 (14)0.0297 (14)0.0282 (13)0.0066 (12)0.0053 (11)0.0110 (11)
C340.0171 (14)0.0314 (14)0.0270 (13)0.0037 (12)0.0026 (11)0.0107 (11)
C350.0236 (15)0.0313 (15)0.0293 (13)0.0056 (12)0.0070 (11)0.0089 (11)
C360.0406 (19)0.0424 (17)0.0252 (13)0.0116 (15)0.0051 (13)0.0059 (12)
C370.0445 (19)0.0369 (17)0.0322 (15)0.0101 (15)0.0075 (14)−0.0017 (13)
C380.0342 (18)0.0298 (15)0.0470 (17)0.0107 (13)0.0126 (14)0.0085 (13)
C390.0278 (16)0.0296 (15)0.0349 (14)0.0104 (12)0.0086 (12)0.0122 (12)
C400.0192 (14)0.0254 (13)0.0253 (12)0.0034 (11)0.0052 (11)0.0062 (11)
O1W0.0624 (17)0.0409 (14)0.0332 (12)0.0100 (13)0.0065 (11)0.0113 (11)
O2W0.0368 (14)0.0343 (13)0.0539 (13)0.0069 (11)0.0122 (11)0.0072 (10)
O3W0.0522 (17)0.0673 (17)0.0235 (11)−0.0061 (13)0.0107 (11)0.0096 (11)

Geometric parameters (Å, °)

Cu1—O12.050 (2)C3—H30.9400
Cu1—O32.063 (2)C4—H40.9400
Cu1—O52.352 (2)C9—H90.9400
Cu1—O72.3178 (19)C10—H100.9400
Cu1—N11.906 (2)C11—H110.9400
Cu1—N21.981 (2)C15—C201.421 (3)
O1—C61.268 (3)C15—C161.402 (4)
O2—C61.243 (4)C16—C171.353 (4)
O3—C71.258 (3)C17—C181.411 (4)
O4—C71.246 (3)C18—C191.363 (4)
O5—C131.239 (3)C19—C201.403 (4)
O6—C131.260 (4)C20—C211.430 (4)
O7—C141.256 (3)C21—C221.434 (3)
O8—C141.247 (3)C22—C271.413 (3)
O1W—H480.87 (4)C22—C231.410 (4)
O1W—H500.89 (5)C23—C241.354 (4)
O2W—H410.87 (4)C24—C251.405 (4)
O2W—H510.86 (6)C25—C261.357 (4)
N1—C11.342 (4)C26—C271.405 (4)
N1—C51.333 (3)C16—H160.9400
N2—C121.345 (4)C17—H170.9400
N2—C81.344 (3)C18—H180.9400
O3W—H470.84 (4)C19—H190.9400
O3W—H440.86 (4)C23—H230.9400
N3—C271.356 (4)C24—H240.9400
N3—C151.359 (4)C25—H250.9400
N4—C211.325 (3)C26—H260.9400
N3—H490.84 (3)C28—C331.415 (3)
N4—H420.86 (3)C28—C291.409 (3)
N4—H430.92 (4)C29—C301.354 (4)
N5—C401.360 (3)C30—C311.411 (4)
N5—C281.349 (3)C31—C321.362 (4)
N6—C341.331 (4)C32—C331.411 (4)
N5—H460.82 (3)C33—C341.439 (3)
N6—H450.86 (3)C34—C351.430 (4)
N6—H400.93 (3)C35—C401.415 (4)
C1—C61.518 (4)C35—C361.416 (4)
C1—C21.372 (4)C36—C371.348 (4)
C2—C31.384 (4)C37—C381.406 (4)
C3—C41.390 (4)C38—C391.370 (4)
C4—C51.374 (4)C39—C401.399 (4)
C5—C71.510 (4)C29—H290.9400
C8—C131.521 (4)C30—H300.9400
C8—C91.376 (4)C31—H310.9400
C9—C101.382 (4)C32—H320.9400
C10—C111.375 (4)C36—H360.9400
C11—C121.381 (4)C37—H370.9400
C12—C141.521 (4)C38—H380.9400
C2—H20.9400C39—H390.9400
O1—Cu1—O3159.50 (8)C12—C11—H11120.00
O1—Cu1—O591.62 (8)C10—C11—H11120.00
O1—Cu1—O794.52 (7)N3—C15—C20120.4 (2)
O1—Cu1—N179.95 (9)C16—C15—C20120.2 (2)
O1—Cu1—N2104.42 (8)N3—C15—C16119.4 (2)
O3—Cu1—O594.79 (7)C15—C16—C17120.5 (2)
O3—Cu1—O789.05 (7)C16—C17—C18120.1 (3)
O3—Cu1—N179.73 (8)C17—C18—C19120.2 (3)
O3—Cu1—N296.04 (8)C18—C19—C20121.3 (2)
O5—Cu1—O7151.63 (7)C15—C20—C21118.4 (2)
O5—Cu1—N1101.04 (8)C19—C20—C21124.0 (2)
O5—Cu1—N275.13 (8)C15—C20—C19117.6 (2)
O7—Cu1—N1107.30 (8)C20—C21—C22119.1 (2)
O7—Cu1—N276.51 (8)N4—C21—C22119.2 (2)
N1—Cu1—N2174.13 (8)N4—C21—C20121.7 (2)
Cu1—O1—C6114.78 (18)C21—C22—C23123.0 (2)
Cu1—O3—C7114.16 (18)C23—C22—C27118.0 (2)
Cu1—O5—C13111.38 (17)C21—C22—C27118.9 (2)
Cu1—O7—C14111.30 (18)C22—C23—C24121.1 (2)
H48—O1W—H50110 (4)C23—C24—C25120.1 (3)
H41—O2W—H51112 (4)C24—C25—C26120.8 (3)
Cu1—N1—C1118.74 (17)C25—C26—C27119.8 (2)
Cu1—N1—C5118.93 (19)N3—C27—C26119.6 (2)
C1—N1—C5122.3 (2)N3—C27—C22120.2 (2)
Cu1—N2—C8120.85 (16)C22—C27—C26120.1 (3)
C8—N2—C12119.7 (2)C17—C16—H16120.00
Cu1—N2—C12119.06 (18)C15—C16—H16120.00
H44—O3W—H47109 (3)C18—C17—H17120.00
C15—N3—C27122.8 (2)C16—C17—H17120.00
C27—N3—H49118 (2)C17—C18—H18120.00
C15—N3—H49118 (2)C19—C18—H18120.00
H42—N4—H43116 (3)C20—C19—H19119.00
C21—N4—H43119.1 (18)C18—C19—H19119.00
C21—N4—H42123.8 (19)C22—C23—H23119.00
C28—N5—C40123.1 (2)C24—C23—H23119.00
C28—N5—H46114 (2)C25—C24—H24120.00
C40—N5—H46123 (2)C23—C24—H24120.00
H40—N6—H45121 (3)C26—C25—H25120.00
C34—N6—H45116 (2)C24—C25—H25120.00
C34—N6—H40123.0 (15)C25—C26—H26120.00
N1—C1—C2119.8 (3)C27—C26—H26120.00
C2—C1—C6128.8 (3)N5—C28—C33120.5 (2)
N1—C1—C6111.5 (2)C29—C28—C33119.8 (2)
C1—C2—C3119.1 (3)N5—C28—C29119.8 (2)
C2—C3—C4120.0 (3)C28—C29—C30120.4 (2)
C3—C4—C5118.4 (3)C29—C30—C31120.6 (2)
N1—C5—C7111.5 (2)C30—C31—C32120.0 (3)
C4—C5—C7128.1 (3)C31—C32—C33121.1 (2)
N1—C5—C4120.3 (3)C28—C33—C32118.2 (2)
O1—C6—O2126.2 (3)C28—C33—C34118.7 (2)
O2—C6—C1118.9 (2)C32—C33—C34123.1 (2)
O1—C6—C1114.9 (3)N6—C34—C33119.7 (3)
O3—C7—C5115.7 (2)N6—C34—C35121.8 (2)
O4—C7—C5118.5 (2)C33—C34—C35118.5 (2)
O3—C7—O4125.8 (3)C34—C35—C40119.3 (2)
N2—C8—C13115.3 (2)C34—C35—C36123.4 (2)
C9—C8—C13123.6 (2)C36—C35—C40117.2 (3)
N2—C8—C9121.1 (2)C35—C36—C37121.6 (3)
C8—C9—C10119.5 (3)C36—C37—C38120.7 (3)
C9—C10—C11119.0 (3)C37—C38—C39119.7 (3)
C10—C11—C12119.3 (3)C38—C39—C40120.3 (2)
N2—C12—C11121.3 (3)N5—C40—C39119.8 (2)
C11—C12—C14122.6 (3)C35—C40—C39120.5 (2)
N2—C12—C14116.1 (2)N5—C40—C35119.8 (3)
O5—C13—O6126.4 (3)C28—C29—H29120.00
O5—C13—C8116.4 (3)C30—C29—H29120.00
O6—C13—C8117.2 (2)C31—C30—H30120.00
O7—C14—C12116.3 (2)C29—C30—H30120.00
O8—C14—C12115.6 (2)C32—C31—H31120.00
O7—C14—O8128.1 (3)C30—C31—H31120.00
C1—C2—H2120.00C31—C32—H32119.00
C3—C2—H2120.00C33—C32—H32120.00
C2—C3—H3120.00C35—C36—H36119.00
C4—C3—H3120.00C37—C36—H36119.00
C3—C4—H4121.00C38—C37—H37120.00
C5—C4—H4121.00C36—C37—H37120.00
C8—C9—H9120.00C37—C38—H38120.00
C10—C9—H9120.00C39—C38—H38120.00
C9—C10—H10120.00C38—C39—H39120.00
C11—C10—H10121.00C40—C39—H39120.00
O3—Cu1—O1—C6−11.1 (4)N1—C5—C7—O3−0.9 (4)
O5—Cu1—O1—C697.2 (2)C4—C5—C7—O3179.1 (3)
O7—Cu1—O1—C6−110.5 (2)C4—C5—C7—O4−1.2 (5)
N1—Cu1—O1—C6−3.7 (2)N1—C5—C7—O4178.9 (2)
N2—Cu1—O1—C6172.3 (2)C9—C8—C13—O6−12.3 (4)
O1—Cu1—O3—C77.0 (3)C13—C8—C9—C10−178.3 (2)
O5—Cu1—O3—C7−100.75 (19)N2—C8—C13—O5−11.4 (3)
O7—Cu1—O3—C7107.40 (19)N2—C8—C9—C10−0.1 (4)
N1—Cu1—O3—C7−0.37 (19)C9—C8—C13—O5166.8 (2)
N2—Cu1—O3—C7−176.27 (19)N2—C8—C13—O6169.5 (2)
O1—Cu1—O5—C1399.50 (19)C8—C9—C10—C11−1.0 (4)
O3—Cu1—O5—C13−99.99 (19)C9—C10—C11—C121.2 (4)
O7—Cu1—O5—C13−3.1 (3)C10—C11—C12—N2−0.2 (4)
N1—Cu1—O5—C13179.57 (19)C10—C11—C12—C14−178.4 (3)
N2—Cu1—O5—C13−5.00 (19)N2—C12—C14—O77.2 (4)
O1—Cu1—O7—C14−106.32 (19)N2—C12—C14—O8−172.0 (2)
O3—Cu1—O7—C1493.89 (19)C11—C12—C14—O86.3 (4)
O5—Cu1—O7—C14−4.4 (3)C11—C12—C14—O7−174.5 (3)
N1—Cu1—O7—C14172.82 (19)N3—C15—C20—C210.0 (4)
N2—Cu1—O7—C14−2.56 (19)C16—C15—C20—C19−0.1 (4)
O1—Cu1—N1—C13.8 (2)N3—C15—C16—C17179.4 (3)
O1—Cu1—N1—C5−177.5 (2)C20—C15—C16—C17−1.1 (5)
O3—Cu1—N1—C1−178.8 (2)C16—C15—C20—C21−179.5 (3)
O3—Cu1—N1—C5−0.2 (2)N3—C15—C20—C19179.5 (3)
O5—Cu1—N1—C1−85.9 (2)C15—C16—C17—C181.5 (5)
O5—Cu1—N1—C592.8 (2)C16—C17—C18—C19−0.6 (5)
O7—Cu1—N1—C195.4 (2)C17—C18—C19—C20−0.6 (5)
O7—Cu1—N1—C5−85.9 (2)C18—C19—C20—C150.9 (4)
O1—Cu1—N2—C8−89.28 (19)C18—C19—C20—C21−179.7 (3)
O1—Cu1—N2—C1298.1 (2)C15—C20—C21—C22−3.9 (4)
O3—Cu1—N2—C891.90 (19)C19—C20—C21—N4−2.1 (4)
O3—Cu1—N2—C12−80.76 (19)C19—C20—C21—C22176.7 (3)
O5—Cu1—N2—C8−1.46 (17)C15—C20—C21—N4177.3 (3)
O5—Cu1—N2—C12−174.1 (2)C20—C21—C22—C274.4 (4)
O7—Cu1—N2—C8179.5 (2)N4—C21—C22—C237.5 (4)
O7—Cu1—N2—C126.80 (18)N4—C21—C22—C27−176.8 (3)
Cu1—O1—C6—O2−178.2 (2)C20—C21—C22—C23−171.4 (3)
Cu1—O1—C6—C13.0 (3)C27—C22—C23—C242.1 (4)
Cu1—O3—C7—O4−179.0 (2)C21—C22—C27—N3−0.9 (4)
Cu1—O3—C7—C50.8 (3)C21—C22—C27—C26−179.3 (3)
Cu1—O5—C13—O6−171.3 (2)C21—C22—C23—C24177.9 (3)
Cu1—O5—C13—C89.7 (3)C23—C22—C27—N3175.1 (3)
Cu1—O7—C14—O8177.6 (3)C23—C22—C27—C26−3.3 (4)
Cu1—O7—C14—C12−1.6 (3)C22—C23—C24—C250.3 (5)
Cu1—N1—C1—C2177.5 (2)C23—C24—C25—C26−1.7 (5)
Cu1—N1—C1—C6−3.3 (3)C24—C25—C26—C270.5 (5)
C5—N1—C1—C2−1.1 (4)C25—C26—C27—N3−176.3 (3)
C5—N1—C1—C6178.1 (2)C25—C26—C27—C222.1 (5)
Cu1—N1—C5—C4−179.4 (2)N5—C28—C29—C30−179.7 (3)
Cu1—N1—C5—C70.6 (3)C33—C28—C29—C301.3 (4)
C1—N1—C5—C4−0.8 (4)N5—C28—C33—C32179.8 (2)
C1—N1—C5—C7179.2 (2)N5—C28—C33—C340.8 (4)
Cu1—N2—C8—C9−171.50 (19)C29—C28—C33—C32−1.2 (4)
Cu1—N2—C8—C136.8 (3)C29—C28—C33—C34179.8 (3)
C12—N2—C8—C91.1 (4)C28—C29—C30—C31−0.1 (5)
C12—N2—C8—C13179.4 (2)C29—C30—C31—C32−1.3 (5)
Cu1—N2—C12—C11171.8 (2)C30—C31—C32—C331.4 (5)
Cu1—N2—C12—C14−9.9 (3)C31—C32—C33—C28−0.2 (4)
C8—N2—C12—C11−1.0 (4)C31—C32—C33—C34178.8 (3)
C8—N2—C12—C14177.3 (2)C28—C33—C34—N6177.9 (3)
C15—N3—C27—C26175.2 (3)C28—C33—C34—C35−1.7 (4)
C15—N3—C27—C22−3.2 (4)C32—C33—C34—N6−1.1 (5)
C27—N3—C15—C16−176.8 (3)C32—C33—C34—C35179.3 (3)
C27—N3—C15—C203.7 (4)N6—C34—C35—C36−0.6 (5)
C28—N5—C40—C39−179.1 (3)N6—C34—C35—C40−177.4 (3)
C28—N5—C40—C350.8 (4)C33—C34—C35—C36179.0 (3)
C40—N5—C28—C29−179.3 (3)C33—C34—C35—C402.2 (4)
C40—N5—C28—C33−0.3 (4)C34—C35—C36—C37−177.3 (3)
C2—C1—C6—O1179.1 (3)C40—C35—C36—C37−0.4 (5)
C2—C1—C6—O20.2 (5)C34—C35—C40—N5−1.7 (5)
N1—C1—C6—O2−179.0 (3)C34—C35—C40—C39178.2 (3)
C6—C1—C2—C3−177.3 (3)C36—C35—C40—N5−178.8 (3)
N1—C1—C6—O10.0 (4)C36—C35—C40—C391.1 (5)
N1—C1—C2—C31.8 (4)C35—C36—C37—C38−0.3 (5)
C1—C2—C3—C4−0.6 (4)C36—C37—C38—C390.2 (5)
C2—C3—C4—C5−1.2 (4)C37—C38—C39—C400.6 (5)
C3—C4—C5—C7−178.0 (3)C38—C39—C40—N5178.7 (3)
C3—C4—C5—N11.9 (4)C38—C39—C40—C35−1.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N6—H40···O1W0.93 (3)2.04 (3)2.927 (4)159 (2)
O2W—H41···O6i0.87 (4)1.93 (4)2.796 (3)177 (4)
N4—H42···O4ii0.86 (3)1.97 (3)2.808 (3)165 (3)
N4—H43···O7iii0.92 (4)1.99 (4)2.880 (3)161 (3)
O3W—H44···O2W0.86 (4)1.86 (4)2.720 (4)176 (3)
N6—H45···O60.86 (3)2.18 (3)2.965 (3)153 (3)
N5—H46···O8iii0.82 (3)1.91 (3)2.719 (3)173 (3)
O3W—H47···O4iv0.84 (4)1.95 (4)2.780 (4)168 (3)
O1W—H48···O50.87 (4)1.97 (4)2.828 (3)174 (4)
N3—H49···O3W0.84 (3)1.86 (3)2.698 (3)170 (3)
O1W—H50···O2v0.89 (5)1.96 (5)2.847 (4)176 (4)
O2W—H51···O60.86 (6)1.97 (5)2.812 (4)167 (4)
C3—H3···O2Wv0.942.573.266 (4)131
C10—H10···O3vi0.942.513.152 (3)126
C19—H19···O4ii0.942.493.401 (3)163
C23—H23···O7iii0.942.523.262 (3)136

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z; (iii) x−1, y, z−1; (iv) x−1, y, z; (v) −x+1, −y, −z+1; (vi) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2038).

References

  • Aghabozorg, H., Ahmadvand, S., Mirzaei, M. & Khavasi, H. R. (2010). Acta Cryst. E66, m1318–m1319. [PMC free article] [PubMed]
  • Aghabozorg, H., Attar Gharamaleki, J., Olmstead, M. M., Derikvand, Z. & Hooshmand, S. (2009). Acta Cryst. E65, m186–m187. [PMC free article] [PubMed]
  • Aghabozorg, H., Zabihi, F., Ghadermazi, M., Attar Gharamaleki, J. & Sheshmani, S. (2006). Acta Cryst. E62, m2091–m2093.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Derikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, m642–m643. [PMC free article] [PubMed]
  • Du, M., Cai, H. & Zhao, X.-J. (2006). Inorg. Chim. Acta.359, 673–679.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Stoe & Cie (2006). X-AREA and X-RED32 Stoe & Cie GmbH, Darmstadt, Germany.
  • Yenikaya, C., Poyraz, M., Sarı, M., Demirci, F., Ilkimen, H. & Büyükgüngör, O. (2009). Polyhedron, 28, 3526–3532.
  • Zafer Yeşilel, O., Ilker, I., Refat, M. S. & Ishida, H. (2010). Polyhedron, 29, 2345–2351.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography