PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1245.
Published online 2010 September 11. doi:  10.1107/S1600536810035555
PMCID: PMC2983227

Bis(2,2′-bipyridine)(2-hy­droxy-2,2-diphenyl­acetato)­copper(II) nitrate dihydrate

Abstract

In the title complex, [Cu(C14H11O3)(C10H8N2)2]NO3·2H2O, the CuII atom is coordinated by four N atoms from two 2,2′-bipyridine ligands and two O atoms from one benzilate ligand in a distorted octa­hedral geometry. A supra­molecular network is formed via inter­molecular O—H(...)O and C—H(...)O hydrogen-bonding inter­actions. π–π stacking inter­actions between neighboring pyridine rings are also present, the centroid—centroid distance being 3.808 (2) Å.

Related literature

For related structures, see: Carballo et al. (2005 [triangle]); Herrmann et al. (1994 [triangle]); Qiu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1245-scheme1.jpg

Experimental

Crystal data

  • [Cu(C14H11O3)(C10H8N2)2]NO3·2H2O
  • M r = 701.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1245-efi1.jpg
  • a = 10.612 (2) Å
  • b = 25.758 (6) Å
  • c = 12.322 (3) Å
  • β = 108.220 (3)°
  • V = 3199.3 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 296 K
  • 0.23 × 0.21 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.848, T max = 0.872
  • 16165 measured reflections
  • 5750 independent reflections
  • 3659 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.138
  • S = 1.00
  • 5750 reflections
  • 434 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035555/pv2323sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035555/pv2323Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Natural Science Foundation of Guangdong Province (No. 9151063101000037) for support of this work.

supplementary crystallographic information

Comment

Hydrogen-bonding interactions between ligands are specific and directional. In this context, 2,2'-bipyridine and benzilic acid are excellent candidates for construction of three-demensional network motifs, and can simultaneously coordinate metal ions (Carballo et al., 2005; Herrmann et al., 1994; Qiu et al., 2007). Herein, we report the crystal structure of a new coordination polymer, (I).

In (I), the CuII centre is coordinated by two oxygen atoms from one benzilate ligand and four N atoms from two 2,2'-bipyridine ligands (Fig. 1), and represents a distorted octahedral geometry. The Cu—N distances range from 1.982 (3) to 2.174 (3) Å, and the Cu—O distances are 1.982 (3) and 2.744 (3) Å, respectively. However, the O—Cu—N and N—Cu—N angles fall in the range from 89.06 (1) to 158.18 (1) ° and 77.87 (1) to 175.10 (1) °, respectively. Intermolecular O—H···O and C—H···O hydrogen bonding interactions (Table 1) link each asymmetric unit to form a three-dimensional supramolecular network motif (Fig. 2) in (0 0 1) plane, which is stabilized by π-π stacking interactions between neighboring pyridyl rings (the centriod—centriod distance is 3.808 Å).

Experimental

A mixture of CuNO3 (0.063 g, 0.5mmol), 2,2'-bipyridine (0.078 g; 0.5 mmol), benzilic acid (0.114 g; 0.5 mmol), water (10 mL) was stirred vigorously for 60 min and the blue block crystals were obtained by evaporating mother liquor.

Refinement

Water H atoms and hydroxyl H atoms were tentatively located from difference Fourier maps and were refined with distance restraints of O–H = 0.84 and 0.82 Å, respectively, H···H = 1.35 Å, and Uiso(H) = 1.5 Ueq(O). Carbon-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the asymmetric unit of (I) showing the atomic-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the three-dimensional supramolecular network of the title compound, hydrogen bonds are shown as dashed linesand. The H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

[Cu(C14H11O3)(C10H8N2)2]NO3·2H2OF(000) = 1452
Mr = 701.18Dx = 1.456 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2592 reflections
a = 10.612 (2) Åθ = 2.2–22.7°
b = 25.758 (6) ŵ = 0.74 mm1
c = 12.322 (3) ÅT = 296 K
β = 108.220 (3)°Block, blue
V = 3199.3 (13) Å30.23 × 0.21 × 0.19 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer5750 independent reflections
Radiation source: fine-focus sealed tube3659 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −12→9
Tmin = 0.848, Tmax = 0.872k = −30→30
16165 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.053P)2 + 2.8562P] where P = (Fo2 + 2Fc2)/3
5750 reflections(Δ/σ)max < 0.001
434 parametersΔρmax = 0.56 e Å3
6 restraintsΔρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.41218 (5)0.128914 (18)0.88185 (4)0.03907 (17)
O10.6773 (3)0.12292 (11)1.0021 (2)0.0493 (7)
O20.5624 (3)0.15418 (10)0.8330 (2)0.0416 (7)
O30.9044 (3)0.15772 (12)0.9953 (2)0.0487 (7)
H30.88000.13961.03970.073*
O40.9802 (5)0.43639 (17)0.8832 (4)0.1032 (14)
O51.1068 (4)0.38476 (16)0.8257 (4)0.0910 (13)
O60.9367 (4)0.42004 (17)0.7058 (4)0.0890 (12)
O1W0.1694 (5)0.02577 (18)0.5874 (4)0.1147 (15)
H2W0.16580.03530.52040.172*
H1W0.1207−0.00110.57730.172*
O2W0.6493 (5)0.92807 (19)0.5360 (4)0.1224 (16)
H4W0.62970.95270.48770.184*
H3W0.73320.92590.55270.184*
N10.4082 (3)0.19785 (13)0.9567 (3)0.0407 (8)
N20.2541 (3)0.16914 (13)0.7536 (3)0.0422 (8)
N30.3174 (3)0.08879 (13)0.9731 (3)0.0432 (8)
N40.4228 (3)0.05833 (12)0.8213 (3)0.0414 (8)
N51.0072 (5)0.41464 (17)0.8048 (4)0.0656 (11)
C10.4840 (4)0.20910 (18)1.0623 (4)0.0509 (11)
H10.53720.18311.10550.061*
C20.4873 (5)0.2571 (2)1.1103 (4)0.0637 (14)
H20.53970.26341.18510.076*
C30.4119 (5)0.2954 (2)1.0458 (5)0.0705 (16)
H3A0.41460.32871.07530.085*
C40.3318 (5)0.28473 (18)0.9368 (5)0.0644 (14)
H40.27890.31070.89280.077*
C50.3301 (4)0.23523 (16)0.8930 (4)0.0442 (10)
C60.2447 (4)0.21925 (16)0.7790 (3)0.0415 (10)
C70.1595 (5)0.25249 (19)0.7035 (4)0.0591 (13)
H70.15520.28730.72210.071*
C80.0810 (5)0.2338 (2)0.6007 (4)0.0714 (15)
H80.02260.25570.54880.086*
C90.0892 (5)0.1829 (2)0.5753 (4)0.0701 (15)
H90.03650.16950.50590.084*
C100.1764 (5)0.15173 (18)0.6536 (4)0.0547 (12)
H100.18140.11680.63600.066*
C110.2639 (5)0.10780 (19)1.0494 (4)0.0549 (12)
H110.27070.14331.06390.066*
C120.1999 (5)0.0782 (2)1.1073 (4)0.0670 (14)
H120.16330.09281.15960.080*
C130.1914 (6)0.0260 (2)1.0854 (5)0.0752 (16)
H130.14970.00441.12420.090*
C140.2437 (5)0.0054 (2)1.0070 (4)0.0623 (13)
H140.2363−0.03000.99110.075*
C150.3082 (4)0.03765 (16)0.9512 (4)0.0434 (10)
C160.3693 (4)0.02037 (16)0.8674 (3)0.0417 (10)
C170.3744 (5)−0.03074 (17)0.8344 (4)0.0560 (12)
H170.3370−0.05690.86640.067*
C180.4351 (5)−0.04255 (18)0.7543 (4)0.0639 (14)
H180.4390−0.07680.73160.077*
C190.4897 (5)−0.00371 (18)0.7080 (4)0.0626 (13)
H190.5320−0.01090.65410.075*
C200.4803 (5)0.04618 (17)0.7434 (4)0.0518 (12)
H200.51610.07280.71120.062*
C210.6700 (4)0.14445 (14)0.9122 (4)0.0387 (10)
C220.8000 (4)0.16241 (15)0.8909 (3)0.0376 (9)
C230.7908 (4)0.21966 (15)0.8583 (3)0.0393 (10)
C240.7320 (5)0.25356 (16)0.9140 (4)0.0506 (11)
H240.69620.24090.96870.061*
C250.7252 (5)0.30584 (18)0.8902 (5)0.0645 (14)
H250.68490.32820.92860.077*
C260.7776 (5)0.32494 (18)0.8103 (4)0.0606 (13)
H260.77230.36020.79320.073*
C270.8376 (5)0.29183 (19)0.7558 (4)0.0610 (13)
H270.87420.30480.70200.073*
C280.8451 (4)0.23917 (17)0.7792 (4)0.0511 (11)
H280.88680.21710.74150.061*
C290.8237 (4)0.12686 (15)0.7997 (3)0.0392 (9)
C300.7340 (5)0.12378 (17)0.6913 (4)0.0546 (12)
H300.65880.14470.67150.066*
C310.7548 (6)0.0900 (2)0.6122 (4)0.0709 (15)
H310.69290.08770.53970.085*
C320.8672 (7)0.0595 (2)0.6401 (6)0.0791 (17)
H320.88200.03700.58640.095*
C330.9555 (6)0.0627 (2)0.7457 (6)0.0794 (17)
H331.03140.04220.76460.095*
C340.9351 (5)0.09591 (18)0.8255 (4)0.0592 (13)
H340.99710.09750.89800.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0364 (3)0.0342 (3)0.0450 (3)−0.0020 (2)0.0105 (2)0.0002 (2)
O10.0513 (19)0.0515 (18)0.0466 (18)0.0013 (15)0.0173 (15)0.0154 (14)
O20.0374 (17)0.0392 (16)0.0461 (17)−0.0033 (13)0.0101 (14)0.0019 (13)
O30.0391 (17)0.056 (2)0.0426 (17)−0.0052 (14)0.0012 (14)0.0060 (14)
O40.122 (4)0.099 (3)0.101 (3)−0.014 (3)0.052 (3)−0.037 (3)
O50.083 (3)0.087 (3)0.106 (3)0.021 (2)0.035 (3)0.023 (2)
O60.072 (3)0.113 (3)0.075 (3)−0.002 (2)0.013 (2)0.013 (2)
O1W0.105 (4)0.113 (4)0.120 (4)−0.008 (3)0.025 (3)−0.028 (3)
O2W0.091 (3)0.142 (4)0.126 (4)0.007 (3)0.022 (3)0.002 (3)
N10.0338 (19)0.045 (2)0.043 (2)−0.0035 (16)0.0108 (17)−0.0041 (16)
N20.036 (2)0.040 (2)0.046 (2)0.0015 (16)0.0063 (17)−0.0025 (16)
N30.037 (2)0.043 (2)0.049 (2)0.0013 (16)0.0127 (17)0.0030 (16)
N40.040 (2)0.040 (2)0.043 (2)−0.0030 (16)0.0110 (17)0.0023 (16)
N50.069 (3)0.060 (3)0.072 (3)−0.016 (2)0.028 (3)0.000 (2)
C10.042 (3)0.057 (3)0.051 (3)−0.003 (2)0.010 (2)−0.008 (2)
C20.050 (3)0.075 (4)0.066 (3)−0.008 (3)0.017 (3)−0.027 (3)
C30.061 (3)0.058 (3)0.091 (4)−0.004 (3)0.021 (3)−0.039 (3)
C40.058 (3)0.047 (3)0.084 (4)0.008 (2)0.016 (3)−0.007 (3)
C50.035 (2)0.042 (2)0.055 (3)0.001 (2)0.014 (2)−0.006 (2)
C60.034 (2)0.046 (3)0.044 (3)0.0041 (19)0.011 (2)0.000 (2)
C70.051 (3)0.056 (3)0.065 (3)0.016 (2)0.011 (3)0.012 (2)
C80.054 (3)0.087 (4)0.060 (4)0.023 (3)−0.002 (3)0.014 (3)
C90.053 (3)0.090 (4)0.051 (3)0.006 (3)−0.007 (3)−0.005 (3)
C100.050 (3)0.051 (3)0.054 (3)0.001 (2)0.003 (2)−0.006 (2)
C110.050 (3)0.059 (3)0.061 (3)0.000 (2)0.026 (3)0.000 (2)
C120.061 (3)0.081 (4)0.069 (3)−0.001 (3)0.034 (3)0.005 (3)
C130.083 (4)0.078 (4)0.076 (4)−0.013 (3)0.041 (3)0.018 (3)
C140.067 (3)0.056 (3)0.066 (3)−0.006 (3)0.023 (3)0.011 (2)
C150.035 (2)0.043 (3)0.046 (3)−0.0045 (19)0.003 (2)0.009 (2)
C160.036 (2)0.040 (2)0.043 (3)−0.0039 (18)0.003 (2)0.0070 (19)
C170.064 (3)0.037 (3)0.065 (3)−0.009 (2)0.018 (3)0.004 (2)
C180.075 (4)0.040 (3)0.072 (4)−0.001 (3)0.018 (3)−0.007 (2)
C190.071 (4)0.049 (3)0.073 (3)0.000 (3)0.030 (3)−0.010 (2)
C200.054 (3)0.049 (3)0.054 (3)−0.009 (2)0.018 (2)−0.003 (2)
C210.041 (3)0.030 (2)0.044 (3)0.0003 (18)0.012 (2)−0.0027 (18)
C220.033 (2)0.041 (2)0.037 (2)−0.0013 (18)0.0094 (19)0.0019 (18)
C230.035 (2)0.035 (2)0.044 (2)−0.0055 (18)0.008 (2)−0.0010 (18)
C240.060 (3)0.040 (3)0.057 (3)−0.007 (2)0.025 (2)−0.003 (2)
C250.070 (4)0.045 (3)0.080 (4)−0.001 (3)0.025 (3)−0.008 (3)
C260.055 (3)0.041 (3)0.075 (4)−0.006 (2)0.006 (3)0.007 (3)
C270.061 (3)0.053 (3)0.067 (3)−0.013 (3)0.018 (3)0.017 (3)
C280.051 (3)0.050 (3)0.056 (3)−0.005 (2)0.022 (2)0.003 (2)
C290.039 (2)0.036 (2)0.047 (2)−0.0025 (19)0.019 (2)0.0019 (19)
C300.067 (3)0.050 (3)0.047 (3)0.003 (2)0.018 (2)−0.003 (2)
C310.095 (5)0.065 (3)0.054 (3)−0.010 (3)0.025 (3)−0.009 (3)
C320.107 (5)0.058 (3)0.091 (5)0.005 (3)0.058 (4)−0.012 (3)
C330.073 (4)0.074 (4)0.099 (5)0.016 (3)0.040 (4)−0.001 (3)
C340.048 (3)0.063 (3)0.069 (3)0.010 (2)0.022 (3)0.002 (3)

Geometric parameters (Å, °)

Cu1—O21.982 (3)C11—H110.9300
Cu1—N41.982 (3)C12—C131.369 (7)
Cu1—N12.007 (3)C12—H120.9300
Cu1—N32.013 (3)C13—C141.362 (7)
Cu1—N22.174 (3)C13—H130.9300
O1—C211.220 (5)C14—C151.388 (6)
O2—C211.274 (5)C14—H140.9300
O3—C221.417 (4)C15—C161.450 (6)
O3—H30.8200C16—C171.384 (6)
O4—N51.225 (5)C17—C181.370 (6)
O5—N51.267 (5)C17—H170.9300
O6—N51.223 (5)C18—C191.367 (7)
O1W—H2W0.8499C18—H180.9300
O1W—H1W0.8501C19—C201.371 (6)
O2W—H4W0.8499C19—H190.9300
O2W—H3W0.8499C20—H200.9300
N1—C11.330 (5)C21—C221.553 (6)
N1—C51.350 (5)C22—C231.523 (5)
N2—C101.328 (5)C22—C291.530 (5)
N2—C61.339 (5)C23—C281.374 (6)
N3—C111.334 (5)C23—C241.375 (6)
N3—C151.342 (5)C24—C251.375 (6)
N4—C201.326 (5)C24—H240.9300
N4—C161.343 (5)C25—C261.365 (7)
C1—C21.366 (6)C25—H250.9300
C1—H10.9300C26—C271.360 (7)
C2—C31.359 (7)C26—H260.9300
C2—H20.9300C27—C281.384 (6)
C3—C41.374 (7)C27—H270.9300
C3—H3A0.9300C28—H280.9300
C4—C51.383 (6)C29—C341.378 (6)
C4—H40.9300C29—C301.379 (6)
C5—C61.473 (6)C30—C311.375 (6)
C6—C71.375 (6)C30—H300.9300
C7—C81.368 (7)C31—C321.379 (8)
C7—H70.9300C31—H310.9300
C8—C91.356 (7)C32—C331.347 (8)
C8—H80.9300C32—H320.9300
C9—C101.369 (6)C33—C341.371 (7)
C9—H90.9300C33—H330.9300
C10—H100.9300C34—H340.9300
C11—C121.362 (6)
O2—Cu1—N492.34 (13)C12—C13—H13119.8
O2—Cu1—N189.06 (12)C13—C14—C15119.5 (5)
N4—Cu1—N1175.10 (14)C13—C14—H14120.3
O2—Cu1—N3158.18 (12)C15—C14—H14120.3
N4—Cu1—N380.61 (14)N3—C15—C14120.2 (4)
N1—Cu1—N396.40 (14)N3—C15—C16115.1 (4)
O2—Cu1—N297.69 (12)C14—C15—C16124.7 (4)
N4—Cu1—N2106.57 (13)N4—C16—C17120.5 (4)
N1—Cu1—N277.87 (13)N4—C16—C15114.9 (4)
N3—Cu1—N2104.11 (13)C17—C16—C15124.7 (4)
C21—O2—Cu1108.4 (3)C18—C17—C16119.6 (4)
C22—O3—H3109.5C18—C17—H17120.2
H2W—O1W—H1W104.6C16—C17—H17120.2
H4W—O2W—H3W103.2C19—C18—C17119.6 (4)
C1—N1—C5119.1 (4)C19—C18—H18120.2
C1—N1—Cu1123.3 (3)C17—C18—H18120.2
C5—N1—Cu1117.5 (3)C18—C19—C20118.1 (5)
C10—N2—C6118.1 (4)C18—C19—H19120.9
C10—N2—Cu1128.9 (3)C20—C19—H19120.9
C6—N2—Cu1112.8 (3)N4—C20—C19123.2 (4)
C11—N3—C15118.8 (4)N4—C20—H20118.4
C11—N3—Cu1127.0 (3)C19—C20—H20118.4
C15—N3—Cu1114.1 (3)O1—C21—O2125.0 (4)
C20—N4—C16119.1 (4)O1—C21—C22118.8 (4)
C20—N4—Cu1125.6 (3)O2—C21—C22116.3 (3)
C16—N4—Cu1115.3 (3)O3—C22—C23106.8 (3)
O6—N5—O4120.8 (5)O3—C22—C29110.7 (3)
O6—N5—O5118.8 (5)C23—C22—C29113.4 (3)
O4—N5—O5120.3 (5)O3—C22—C21107.8 (3)
N1—C1—C2123.2 (5)C23—C22—C21110.2 (3)
N1—C1—H1118.4C29—C22—C21107.7 (3)
C2—C1—H1118.4C28—C23—C24118.6 (4)
C3—C2—C1118.2 (5)C28—C23—C22122.3 (4)
C3—C2—H2120.9C24—C23—C22119.0 (4)
C1—C2—H2120.9C23—C24—C25121.2 (4)
C2—C3—C4119.8 (5)C23—C24—H24119.4
C2—C3—H3A120.1C25—C24—H24119.4
C4—C3—H3A120.1C26—C25—C24120.0 (5)
C3—C4—C5119.6 (5)C26—C25—H25120.0
C3—C4—H4120.2C24—C25—H25120.0
C5—C4—H4120.2C27—C26—C25119.3 (5)
N1—C5—C4120.0 (4)C27—C26—H26120.4
N1—C5—C6116.0 (4)C25—C26—H26120.4
C4—C5—C6124.0 (4)C26—C27—C28121.2 (5)
N2—C6—C7121.6 (4)C26—C27—H27119.4
N2—C6—C5115.0 (3)C28—C27—H27119.4
C7—C6—C5123.4 (4)C23—C28—C27119.8 (4)
C8—C7—C6119.2 (5)C23—C28—H28120.1
C8—C7—H7120.4C27—C28—H28120.1
C6—C7—H7120.4C34—C29—C30118.2 (4)
C9—C8—C7119.3 (5)C34—C29—C22120.2 (4)
C9—C8—H8120.3C30—C29—C22121.6 (4)
C7—C8—H8120.3C31—C30—C29120.5 (5)
C8—C9—C10118.8 (5)C31—C30—H30119.7
C8—C9—H9120.6C29—C30—H30119.7
C10—C9—H9120.6C30—C31—C32120.1 (5)
N2—C10—C9122.9 (4)C30—C31—H31119.9
N2—C10—H10118.6C32—C31—H31119.9
C9—C10—H10118.6C33—C32—C31119.5 (5)
N3—C11—C12123.7 (5)C33—C32—H32120.3
N3—C11—H11118.2C31—C32—H32120.3
C12—C11—H11118.2C32—C33—C34120.9 (5)
C11—C12—C13117.4 (5)C32—C33—H33119.6
C11—C12—H12121.3C34—C33—H33119.6
C13—C12—H12121.3C33—C34—C29120.8 (5)
C14—C13—C12120.4 (5)C33—C34—H34119.6
C14—C13—H13119.8C29—C34—H34119.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H3W···O5i0.852.162.844 (6)138
O1W—H1W···O4ii0.852.072.884 (7)159
O2W—H3W···O1Wiii0.852.593.041 (7)114
O1W—H2W···O2Wiii0.852.463.041 (7)126
O1W—H2W···O4iv0.852.282.856 (6)125
O3—H3···O6v0.822.483.210 (5)149
O3—H3···O10.822.102.597 (4)119
C20—H20···O20.932.533.019 (5)113
C30—H30···O20.932.522.994 (5)112
C34—H34···O30.932.352.728 (6)104
C10—H10···O1W0.932.413.341 (7)174
C8—H8···O3iv0.932.543.389 (6)152
C4—H4···O5vi0.932.593.488 (6)162
C12—H12···O5vii0.932.383.285 (7)165
C14—H14···O1viii0.932.563.420 (6)155
C17—H17···O1viii0.932.393.270 (5)159

Symmetry codes: (i) −x+2, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1; (iv) x−1, −y+1/2, z−1/2; (v) x, −y+1/2, z+1/2; (vi) x−1, y, z; (vii) x−1, −y+1/2, z+1/2; (viii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2323).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carballo, R., Covelo, B., Vazquez-Lopez, E. M., Garcia-Martinez, E., Castineiras, A. & Niclos, J. (2005). Z. Anorg. Allg. Chem 631, 785–792.
  • Herrmann, W. A., Roesky, P. W., Scherer, W. & Kleine, M. (1994). Organometallics, 13, 4536–4542.
  • Qiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819–1824.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography