PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1223.
Published online 2010 September 8. doi:  10.1107/S1600536810035233
PMCID: PMC2983226

Bis(3-amino­pyrazine-2-carboxyl­ato-κ2 N 1,O)diaqua­manganese(II) mono­hydrate

Abstract

In the title compound, [Mn(C5H4N3O2)2(H2O)2]·H2O, the MnII cation, located on a twofold rotation axis, is N,O-chelated by two 3-amino­pyrazine-2-carboxyl­ate anions and coordin­ated by two water mol­ecules in a distorted octa­hedral geometry. The uncoordinated water mol­ecules lies on a twofold rotation axis. Adjacent mol­ecules are linked by O—H(...)O and N—H(...)O hydrogen bonds into a three-dimensional network motif.

Related literature

For the isostructural magnesium analog, see: Ptasiewicz-Bak & Leciejewicz (1997 [triangle]); Marsh (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1223-scheme1.jpg

Experimental

Crystal data

  • [Mn(C5H4N3O2)2(H2O)2]·H2O
  • M r = 385.21
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1223-efi1.jpg
  • a = 8.3107 (6) Å
  • b = 29.5862 (17) Å
  • c = 12.3791 (7) Å
  • V = 3043.8 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.92 mm−1
  • T = 293 K
  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.875, T max = 0.930
  • 7239 measured reflections
  • 1684 independent reflections
  • 1086 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.165
  • S = 1.14
  • 1684 reflections
  • 126 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.90 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 775 Friedel pairs
  • Flack parameter: −0.02 (5)

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810035233/xu5022sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035233/xu5022Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The crystal structure of Mg(H2O)2(C5H4N3O2)2.H2O was described in the Cc space group (Ptasiewicz-Bak & Leciejewicz, 1997); the space group was revised to the Fdd2 space group (Marsh, 2004). The manganese analog (Scheme I) is isostructural; The water-coordinated manganese atom is N,O-chelated by the carboxylate ion (Fig. 2) in an octahedral environment. The mononuclear and lattice water both lie on a twofold rotation axis. Adjacent molecules are linked by O–H···O and N–H···O hydrogen bonds into a three-dimensional network motif.

Experimental

Manganese acetate (1 mmol) and 2-aminopyrazine-3-carboxylic acid (2 mmol) and sodium hydroxide (2 mmol) were dissolved in a small volume of water to give a light yellow solution. Prismatic crystals separated from the solution after a few days.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms and water H-atoms were located in a difference Fourier map, and were refined with a distance restraints of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their temperature factors were tied to those of the parent atoms by a factor of 1.5 times.

The final difference Fourier map was featureless.

The second value in the WGHT is somewhat large. Using a smaller value led to a deeper hole in the final difference Fourier map and a larger Goodness-of-fit.

Figures

Fig. 1.
Thermal ellipsoid plot (Barbour, 2001) of Mn(H2O)2(C5H4N3O2)2.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The Mn and lattice water molecule lie on a twofold rotation axis. Symmetry-related atoms are not labeled. ...

Crystal data

[Mn(C5H4N3O2)2(H2O)2]·H2OF(000) = 1576
Mr = 385.21Dx = 1.681 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4731 reflections
a = 8.3107 (6) Åθ = 3.0–27.4°
b = 29.5862 (17) ŵ = 0.92 mm1
c = 12.3791 (7) ÅT = 293 K
V = 3043.8 (3) Å3Prism, yellow
Z = 80.15 × 0.10 × 0.08 mm

Data collection

Rigaku R-AXIS RAPID diffractometer1684 independent reflections
Radiation source: fine-focus sealed tube1086 reflections with I > 2σ(I)
graphiteRint = 0.056
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = −10→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −38→38
Tmin = 0.875, Tmax = 0.930l = −16→15
7239 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047w = 1/[σ2(Fo2) + (0.0722P)2 + 15.3101P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.165(Δ/σ)max = 0.001
S = 1.14Δρmax = 0.50 e Å3
1684 reflectionsΔρmin = −0.90 e Å3
126 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0014 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 775 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.02 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.25000.25000.53687 (11)0.0378 (4)
O10.0649 (6)0.26569 (16)0.4190 (4)0.0457 (11)
O2−0.0500 (7)0.31796 (16)0.3169 (4)0.0606 (16)
O1W0.0675 (8)0.24512 (17)0.6593 (4)0.0561 (16)
H110.084 (11)0.225 (2)0.706 (5)0.084*
H120.006 (9)0.267 (2)0.675 (8)0.084*
O2W−0.25000.25000.5133 (9)0.069 (3)
H2−0.164 (7)0.248 (4)0.478 (7)0.104*
N10.2472 (6)0.32757 (14)0.5175 (4)0.0348 (13)
N20.2176 (7)0.41941 (18)0.4774 (5)0.0515 (16)
N30.0251 (9)0.4054 (2)0.3489 (6)0.0634 (19)
H31−0.048 (9)0.391 (3)0.311 (7)0.095*
H320.035 (11)0.4344 (8)0.335 (8)0.095*
C10.0468 (8)0.30645 (19)0.3886 (5)0.0409 (14)
C20.1439 (7)0.34192 (19)0.4439 (5)0.0349 (12)
C30.1271 (8)0.3890 (2)0.4229 (5)0.0427 (14)
C40.3184 (10)0.4035 (2)0.5501 (7)0.0587 (19)
H40.38080.42410.58860.070*
C50.3368 (9)0.3572 (2)0.5727 (6)0.0503 (17)
H50.40950.34740.62480.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0457 (7)0.0301 (6)0.0376 (7)0.0012 (7)0.0000.000
O10.051 (3)0.035 (2)0.051 (3)−0.001 (2)−0.009 (2)0.000 (2)
O20.076 (4)0.050 (2)0.055 (4)0.010 (2)−0.035 (3)0.000 (2)
O1W0.070 (4)0.048 (3)0.050 (3)0.010 (3)0.019 (3)0.008 (2)
O2W0.044 (4)0.055 (4)0.109 (10)−0.009 (4)0.0000.000
N10.041 (2)0.030 (2)0.033 (4)−0.001 (2)−0.009 (3)0.003 (2)
N20.056 (4)0.039 (3)0.059 (4)−0.015 (3)−0.008 (3)0.004 (3)
N30.075 (5)0.042 (3)0.073 (5)−0.001 (3)−0.029 (4)0.019 (3)
C10.050 (4)0.033 (3)0.040 (3)0.001 (3)−0.001 (3)−0.003 (3)
C20.041 (3)0.034 (3)0.030 (3)0.002 (2)−0.008 (3)−0.003 (2)
C30.046 (4)0.037 (3)0.044 (4)−0.001 (3)−0.001 (3)0.006 (3)
C40.063 (4)0.045 (4)0.068 (5)−0.019 (3)−0.014 (4)0.013 (4)
C50.055 (4)0.043 (3)0.053 (4)−0.007 (3)−0.021 (3)0.006 (3)

Geometric parameters (Å, °)

Mn1—O1Wi2.149 (6)N1—C51.338 (8)
Mn1—O1W2.149 (6)N2—C41.316 (10)
Mn1—O12.170 (5)N2—C31.352 (8)
Mn1—O1i2.170 (5)N3—C31.339 (8)
Mn1—N1i2.308 (4)N3—H310.88 (7)
Mn1—N12.308 (4)N3—H320.88 (3)
O1—C11.273 (7)C1—C21.490 (8)
O2—C11.245 (8)C2—C31.424 (8)
O1W—H110.84 (7)C4—C51.409 (9)
O1W—H120.84 (7)C4—H40.9300
O2W—H20.84 (7)C5—H50.9300
N1—C21.322 (7)
O1Wi—Mn1—O1W90.3 (4)C5—N1—Mn1126.3 (4)
O1Wi—Mn1—O1163.73 (16)C4—N2—C3117.2 (6)
O1W—Mn1—O189.33 (18)C3—N3—H31129 (7)
O1Wi—Mn1—O1i89.33 (18)C3—N3—H32115 (6)
O1W—Mn1—O1i163.73 (16)H31—N3—H32115 (9)
O1—Mn1—O1i95.5 (3)O2—C1—O1123.1 (6)
O1Wi—Mn1—N1i97.65 (18)O2—C1—C2119.0 (5)
O1W—Mn1—N1i90.79 (18)O1—C1—C2117.9 (6)
O1—Mn1—N1i98.61 (18)N1—C2—C3120.2 (5)
O1i—Mn1—N1i73.16 (17)N1—C2—C1116.2 (5)
O1Wi—Mn1—N190.79 (18)C3—C2—C1123.5 (5)
O1W—Mn1—N197.65 (18)N3—C3—N2116.9 (6)
O1—Mn1—N173.16 (17)N3—C3—C2122.7 (6)
O1i—Mn1—N198.61 (18)N2—C3—C2120.3 (6)
N1i—Mn1—N1168.0 (3)N2—C4—C5123.5 (7)
C1—O1—Mn1119.0 (4)N2—C4—H4118.2
Mn1—O1W—H11115 (6)C5—C4—H4118.2
Mn1—O1W—H12122 (7)N1—C5—C4118.4 (6)
H11—O1W—H12119 (10)N1—C5—H5120.8
C2—N1—C5120.2 (5)C4—C5—H5120.8
C2—N1—Mn1113.4 (4)
O1Wi—Mn1—O1—C114.2 (12)Mn1—N1—C2—C3179.6 (5)
O1W—Mn1—O1—C1102.9 (5)C5—N1—C2—C1−178.6 (6)
O1i—Mn1—O1—C1−92.7 (5)Mn1—N1—C2—C11.0 (7)
N1i—Mn1—O1—C1−166.4 (5)O2—C1—C2—N1−178.5 (6)
N1—Mn1—O1—C14.7 (5)O1—C1—C2—N13.0 (9)
O1Wi—Mn1—N1—C2179.9 (4)O2—C1—C2—C33.0 (9)
O1W—Mn1—N1—C2−89.8 (4)O1—C1—C2—C3−175.5 (6)
O1—Mn1—N1—C2−2.8 (4)C4—N2—C3—N3−179.9 (8)
O1i—Mn1—N1—C290.4 (4)C4—N2—C3—C2−0.7 (10)
N1i—Mn1—N1—C244.8 (4)N1—C2—C3—N3179.6 (7)
O1Wi—Mn1—N1—C5−0.6 (6)C1—C2—C3—N3−1.9 (10)
O1W—Mn1—N1—C589.8 (6)N1—C2—C3—N20.5 (10)
O1—Mn1—N1—C5176.8 (6)C1—C2—C3—N2178.9 (6)
O1i—Mn1—N1—C5−90.0 (6)C3—N2—C4—C50.5 (13)
N1i—Mn1—N1—C5−135.6 (5)C2—N1—C5—C4−0.2 (10)
Mn1—O1—C1—O2175.7 (5)Mn1—N1—C5—C4−179.8 (5)
Mn1—O1—C1—C2−5.8 (8)N2—C4—C5—N10.0 (13)
C5—N1—C2—C30.0 (9)

Symmetry codes: (i) −x+1/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1w—H11···O2ii0.84 (7)1.89 (3)2.704 (7)162 (9)
O1w—H12···N2iii0.84 (7)2.02 (4)2.792 (7)152 (9)
O2w—H2···O10.84 (7)2.10 (4)2.902 (7)159 (10)
N3—H31···O20.88 (7)2.17 (9)2.690 (8)118 (8)
N3—H32···O2wiv0.88 (3)2.15 (3)3.001 (7)161 (9)

Symmetry codes: (ii) −x, −y+1/2, z+1/2; (iii) x−1/4, −y+3/4, z+1/4; (iv) −x−1/4, y+1/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5022).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Marsh, R. E. (2004). Acta Cryst. B60, 252–253. [PubMed]
  • Ptasiewicz-Bak, H. & Leciejewicz, J. (1997). Pol. J. Chem.71, 1350–1358.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography