PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2696.
Published online 2010 September 30. doi:  10.1107/S1600536810037244
PMCID: PMC2983222

N′-[4-(Dimethyl­amino)­benzyl­idene]furan-2-carbohydrazide

Abstract

The title compound, C14H15N3O2, was prepared by the reaction of 4-(dimethyl­amino)­benzaldehyde and furan-2-carbohydrazide. The dihedral angle between the benzene ring and the furan ring is 25.59 (19)°. In the crystal, mol­ecules are linked by inter­molecular N—H(...)O hydrogen bonds, forming chains along [010].

Related literature

For the applications of this class of Schiff base compounds, see: Habermehl et al. (2006 [triangle]); Nataliya et al. (2007 [triangle]). For a related structure, see: Li & Jian (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2696-scheme1.jpg

Experimental

Crystal data

  • C14H15N3O2
  • M r = 257.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2696-efi1.jpg
  • a = 10.866 (2) Å
  • b = 7.9654 (16) Å
  • c = 30.620 (6) Å
  • V = 2650.2 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 18964 measured reflections
  • 2394 independent reflections
  • 986 reflections with I > 2σ(I)
  • R int = 0.172

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.143
  • S = 0.75
  • 2394 reflections
  • 196 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810037244/lh5131sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037244/lh5131Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases bearing additional donor groups represent an important class of heteropolydentate ligands capable of forming mono-, bi-, and polynuclear complexes with metals in coordination chemistry (Nataliya et al., 2007). They are important intermediates which have many interesting properties (Habermehl et al., 2006). As part of our search for new schiff base compounds we synthesized the title compound (I), and the crystal structure is presented herein. The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the benzene ring and the furan ring is 25.59 (19)°. In the crystal structure molecules are linked by intermolecular N-H···O hydrogen bonds to form one-dimensional chains along [010]. The bond lengths and angles agree with those observed in a related structure (Li & Jian, 2010).

Experimental

A mixture of 4-(dimethylamino)benzaldehyde (0.1 mol), and furan-2-carbohydrazide (0.1 mol) was stirred in refluxing ethanol (20 mL) for 2 h to afford the title compound (0.089 mol, yield 89%). Single crystals suitable for X-ray measurements were obtained by recrystallization of solution of the title compound in ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H = 0.97 Å, N-H = 0.86Å and Uiso=1.2Ueq(C,N). The H atoms of the methyl groups were refined independently with isotropic displacement parameters.

Figures

Fig. 1.
The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C14H15N3O2F(000) = 1088
Mr = 257.29Dx = 1.290 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 986 reflections
a = 10.866 (2) Åθ = 3.2–25.3°
b = 7.9654 (16) ŵ = 0.09 mm1
c = 30.620 (6) ÅT = 293 K
V = 2650.2 (9) Å3Block, colorless
Z = 80.22 × 0.20 × 0.18 mm

Data collection

Bruker SMART CCD diffractometer986 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.172
graphiteθmax = 25.3°, θmin = 3.2°
[var phi] and ω scansh = −13→13
18964 measured reflectionsk = −8→9
2394 independent reflectionsl = −36→36

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.75w = 1/[σ2(Fo2) + (0.0687P)2] where P = (Fo2 + 2Fc2)/3
2394 reflections(Δ/σ)max = 0.002
196 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N20.2524 (2)0.2706 (3)0.07906 (7)0.0526 (7)
H2A0.20850.35180.06910.063*
N10.2357 (2)0.2125 (3)0.12126 (7)0.0522 (7)
C90.2087 (3)0.1579 (4)0.25849 (9)0.0565 (9)
H9A0.26420.09210.27400.068*
O20.39675 (19)0.0722 (3)0.06431 (6)0.0592 (6)
C70.1388 (2)0.2646 (4)0.18944 (8)0.0440 (7)
C100.1164 (3)0.2436 (4)0.28088 (9)0.0513 (8)
O10.3004 (2)0.4211 (3)0.00187 (6)0.0778 (8)
C120.0460 (3)0.3471 (4)0.21190 (9)0.0527 (8)
H12A−0.01010.41120.19620.063*
C110.0337 (3)0.3379 (4)0.25639 (9)0.0544 (9)
H11A−0.03000.39490.27020.065*
C50.3391 (3)0.1974 (4)0.05371 (9)0.0496 (8)
N30.1068 (3)0.2355 (4)0.32592 (8)0.0705 (9)
C60.1552 (3)0.2950 (4)0.14317 (9)0.0487 (8)
H6A0.10700.37510.12920.058*
C140.1968 (7)0.1475 (9)0.35123 (15)0.0956 (16)
C80.2191 (3)0.1689 (4)0.21414 (9)0.0517 (8)
H8A0.28190.11050.20020.062*
C20.3436 (4)0.4699 (6)−0.03795 (11)0.0939 (14)
H2B0.31750.5649−0.05290.113*
C40.3625 (3)0.2785 (4)0.01224 (9)0.0533 (9)
C10.4275 (4)0.3640 (5)−0.05229 (11)0.0846 (13)
H1B0.47010.3704−0.07860.101*
C130.0192 (5)0.3396 (9)0.34859 (14)0.0881 (15)
C30.4401 (3)0.2390 (4)−0.01997 (10)0.0698 (10)
H3A0.49250.1467−0.02090.084*
H13A0.025 (4)0.306 (5)0.3795 (14)0.127 (16)*
H13B−0.057 (5)0.330 (7)0.3362 (15)0.15 (2)*
H14A0.202 (4)0.030 (7)0.3405 (13)0.13 (2)*
H13C0.038 (6)0.456 (8)0.3456 (16)0.18 (3)*
H14B0.168 (4)0.141 (6)0.3805 (17)0.148 (19)*
H14C0.273 (7)0.198 (11)0.352 (2)0.24 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0640 (17)0.0533 (18)0.0406 (13)0.0055 (14)0.0054 (12)0.0084 (12)
N10.0624 (17)0.0508 (18)0.0435 (14)−0.0018 (14)0.0053 (12)0.0071 (12)
C90.069 (2)0.048 (2)0.0520 (18)0.0090 (17)0.0001 (16)0.0086 (15)
O20.0723 (15)0.0515 (16)0.0537 (13)0.0078 (12)0.0064 (11)0.0064 (11)
C70.0477 (18)0.041 (2)0.0434 (16)0.0008 (15)0.0062 (13)0.0015 (14)
C100.0603 (19)0.049 (2)0.0442 (16)−0.0075 (16)0.0075 (15)−0.0022 (16)
O10.105 (2)0.074 (2)0.0543 (14)0.0284 (16)0.0211 (13)0.0159 (12)
C120.055 (2)0.049 (2)0.0538 (19)0.0067 (16)−0.0031 (15)0.0056 (15)
C110.050 (2)0.062 (2)0.0518 (18)0.0065 (17)0.0087 (15)−0.0008 (15)
C50.060 (2)0.046 (2)0.0423 (17)−0.0045 (18)0.0037 (15)−0.0013 (14)
N30.090 (2)0.077 (2)0.0447 (15)0.0085 (18)0.0055 (15)−0.0008 (15)
C60.0541 (19)0.042 (2)0.0501 (18)−0.0054 (16)0.0021 (15)0.0044 (14)
C140.130 (5)0.101 (5)0.055 (3)0.018 (4)−0.016 (3)0.010 (3)
C80.060 (2)0.042 (2)0.0536 (19)0.0105 (16)0.0087 (15)0.0031 (14)
C20.130 (4)0.093 (4)0.058 (2)0.029 (3)0.029 (2)0.034 (2)
C40.068 (2)0.046 (2)0.0462 (18)0.0010 (17)0.0017 (15)0.0016 (15)
C10.116 (3)0.086 (3)0.052 (2)0.021 (3)0.024 (2)0.013 (2)
C130.092 (4)0.122 (5)0.051 (2)0.000 (3)0.016 (2)−0.018 (2)
C30.086 (3)0.066 (3)0.058 (2)0.012 (2)0.0147 (18)0.0049 (18)

Geometric parameters (Å, °)

N2—C51.352 (4)C5—C41.447 (4)
N2—N11.384 (3)N3—C141.431 (5)
N2—H2A0.8600N3—C131.441 (5)
N1—C61.283 (3)C6—H6A0.9300
C9—C81.366 (4)C14—H14A0.99 (5)
C9—C101.393 (4)C14—H14B0.95 (5)
C9—H9A0.9300C14—H14C0.92 (7)
O2—C51.222 (3)C8—H8A0.9300
C7—C81.384 (4)C2—C11.317 (5)
C7—C121.385 (4)C2—H2B0.9300
C7—C61.448 (4)C4—C31.336 (4)
C10—C111.391 (4)C1—C31.410 (5)
C10—N31.385 (3)C1—H1B0.9300
O1—C41.359 (4)C13—H13A0.99 (4)
O1—C21.363 (4)C13—H13B0.92 (5)
C12—C111.371 (4)C13—H13C0.95 (6)
C12—H12A0.9300C3—H3A0.9300
C11—H11A0.9300
C5—N2—N1118.9 (3)C7—C6—H6A119.7
C5—N2—H2A120.6N3—C14—H14A109 (3)
N1—N2—H2A120.6N3—C14—H14B108 (3)
C6—N1—N2114.0 (3)H14A—C14—H14B106 (4)
C8—C9—C10121.2 (3)N3—C14—H14C115 (5)
C8—C9—H9A119.4H14A—C14—H14C112 (6)
C10—C9—H9A119.4H14B—C14—H14C107 (4)
C8—C7—C12116.7 (3)C9—C8—C7121.7 (3)
C8—C7—C6123.3 (3)C9—C8—H8A119.1
C12—C7—C6119.8 (3)C7—C8—H8A119.1
C11—C10—C9117.7 (3)C1—C2—O1110.7 (3)
C11—C10—N3120.9 (3)C1—C2—H2B124.6
C9—C10—N3121.4 (3)O1—C2—H2B124.6
C4—O1—C2106.0 (3)C3—C4—O1109.7 (3)
C11—C12—C7122.6 (3)C3—C4—C5130.8 (3)
C11—C12—H12A118.7O1—C4—C5119.4 (3)
C7—C12—H12A118.7C2—C1—C3106.6 (3)
C12—C11—C10120.1 (3)C2—C1—H1B126.7
C12—C11—H11A119.9C3—C1—H1B126.7
C10—C11—H11A119.9N3—C13—H13A105 (3)
O2—C5—N2123.8 (3)N3—C13—H13B111 (3)
O2—C5—C4120.5 (3)H13A—C13—H13B116 (4)
N2—C5—C4115.7 (3)N3—C13—H13C112 (4)
C10—N3—C14120.7 (3)H13A—C13—H13C110 (4)
C10—N3—C13120.2 (3)H13B—C13—H13C103 (5)
C14—N3—C13118.2 (4)C4—C3—C1106.9 (3)
N1—C6—C7120.7 (3)C4—C3—H3A126.6
N1—C6—H6A119.7C1—C3—H3A126.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.102.933 (3)163

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5131).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Habermehl, N. C., Angus, P. M. & Kilah, N. L. (2006). Inorg. Chem.45, 1445–1462. [PubMed]
  • Li, Y.-F. & Jian, F.-F. (2010). Acta Cryst. E66, o1720. [PMC free article] [PubMed]
  • Nataliya, E. B., Marina, D. R. & Yuir, A. U. (2007). Chem. Rev.107, 46–79.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography