PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1266–m1267.
Published online 2010 September 18. doi:  10.1107/S1600536810036500
PMCID: PMC2983217

catena-Poly[[triphenyl­tin(IV)]-μ2-[3-(cyclo­hexyl­carbamo­yl)propanoato-κ2 O 1:O 3]]

Abstract

The Sn atom in the polymeric title compound, [Sn(C6H5)3(C10H16NO3)]n, is five-coordinated within a trans-C3O2 donor set that defines an approximate trigonal-bipyramidal geometry. The carboxyl­ate ligand is monodentate and the amide O atom bridges a symmetry-related Sn atom, generating a chain along [010] with a linear topology. An intra­molecular carboxyl­ate–carbonyl N—H(...)O hydrogen bond is responsible for the curved conformation within the carboxyl­ate ligand.

Related literature

For reviews of organotin carboxyl­ate structures, see: Ng et al. (1986 [triangle]); Tiekink (1991 [triangle]). For the influence of steric effects upon structural motifs, see: Willem et al. (1998 [triangle]). For a closely related structure, see: Imtiaz-ud-Din et al. (2010 [triangle]). For additional geometric analysis, see: Addison et al. (1984 [triangle]). For the synthesis of N-cyclo­hexyl­succinamic acid, see: Dolzhenko et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1266-scheme1.jpg

Experimental

Crystal data

  • [Sn(C6H5)3(C10H16NO3)]
  • M r = 548.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1266-efi1.jpg
  • a = 16.2488 (12) Å
  • b = 9.1243 (7) Å
  • c = 17.6597 (13) Å
  • β = 106.101 (1)°
  • V = 2515.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.04 mm−1
  • T = 100 K
  • 0.25 × 0.15 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.634, T max = 0.746
  • 23281 measured reflections
  • 5756 independent reflections
  • 4864 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.084
  • S = 1.03
  • 5756 reflections
  • 302 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036500/hg2713sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036500/hg2713Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Allama Iqbal Open University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

Triorganotin carboxylates are usually monomeric or polymeric (Ng et al., 1986; Tiekink, 1991), depending largely on steric factors (Willem et al., 1998). As a continuation of recent studies on triorganotin carboxylates having carboxylate ligands with additional coordination functionality (Imtiaz-ud-Din et al., 2010), the title compound, (I), was investigated.

In (I), Fig. 1, the Sn atom is coordinated by three ipso-C atoms derived from three phenyl groups, an O atom from a monodentate carboxylate ligand, and, from a symmetry related molecule, an amide-O atom, to define a trans-C3O2 coordination geometry, Table 1. The value of τ computes to 0.73 compared to τ = 1.0 for an ideal trigonal bipyramid and τ = 0.0 for an ideal square pyramid (Addison et al., 1984). The distortion in the Sn atom geometry is ascribed, in part, to the close approach of the O2 atom; Sn···O2 = 2.9936 (17) Å. The central part of the carboxylate ligand is curved, e.g. the C19–C20–C21–C22 torsion angle = -77.3 (3) °, owing to the presence of an intramolecular N–H···O2 hydrogen bond, Table 2. The resulting supramolecular chain has a linear topology, Fig. 2, in contrast to the helical chain found recently in the structure of the benzoate derivative (Imtiaz-ud-Din et al., 2010).

Experimental

N-Cyclohexylsuccinamic acid was synthesized from the reaction of succinic anhydride and cyclohexylamine in ethyl acetate by the methodology reported earlier (Dolzhenko et al., 2003). Triphenyltin hydroxide (3.17 g, 10 mmol) and N-cyclohexylsuccinamic acid (2.66 g, 10 mmol) were heated to reflux in 50 ml dry ethanol/acetone mixture (8:2) for 6–8 h, The solvent was then removed under reduced pressure and the solid mass thus obtained was recrystallized from a mixture of chloroform and n-hexane (3:1) to furnish colourless crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.86±0.01 Å; the Uiso value was freely refined.

Figures

Fig. 1.
The molecular structure of the asymmetric unit in (I) extended to show the bridging atoms and showing the atom-labelling scheme with displacement ellipsoids at the 50% probability level. Symmetry operation i: x, 1 + y, z; ii: x, -1 + y, z.
Fig. 2.
A portion of the linear polymeric chain in (I). Colour code: Sn, orange; O, red; N, blue; C, grey; H, green.

Crystal data

[Sn(C6H5)3(C10H16NO3)]F(000) = 1120
Mr = 548.23Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5969 reflections
a = 16.2488 (12) Åθ = 2.4–28.2°
b = 9.1243 (7) ŵ = 1.04 mm1
c = 17.6597 (13) ÅT = 100 K
β = 106.101 (1)°Block, colourless
V = 2515.5 (3) Å30.25 × 0.15 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer5756 independent reflections
Radiation source: fine-focus sealed tube4864 reflections with I > 2σ(I)
graphiteRint = 0.047
ω scanθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.634, Tmax = 0.746k = −11→11
23281 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0481P)2] where P = (Fo2 + 2Fc2)/3
5756 reflections(Δ/σ)max = 0.002
302 parametersΔρmax = 0.53 e Å3
1 restraintΔρmin = −0.64 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn0.713719 (10)0.684277 (17)0.636309 (10)0.01166 (7)
O10.69004 (11)0.47709 (18)0.57420 (10)0.0155 (4)
O20.67770 (12)0.38360 (18)0.68702 (10)0.0167 (4)
O30.75097 (11)−0.09345 (18)0.70015 (10)0.0162 (4)
N10.76074 (14)0.1326 (2)0.74976 (12)0.0155 (4)
H10.7445 (18)0.2220 (14)0.7429 (17)0.021 (8)*
C10.83515 (16)0.6177 (3)0.71146 (15)0.0135 (5)
C20.86804 (18)0.6706 (3)0.78784 (16)0.0182 (6)
H20.83460.73520.80940.022*
C30.94956 (19)0.6294 (3)0.83297 (18)0.0260 (6)
H30.97130.66590.88510.031*
C40.99895 (18)0.5356 (3)0.80199 (18)0.0272 (7)
H41.05490.50900.83230.033*
C50.96632 (18)0.4809 (3)0.72680 (18)0.0249 (6)
H50.99980.41600.70550.030*
C60.88493 (17)0.5203 (3)0.68220 (16)0.0196 (6)
H60.86270.48030.63090.023*
C70.71739 (17)0.7899 (3)0.52981 (15)0.0156 (5)
C80.79231 (19)0.8554 (3)0.52171 (17)0.0212 (6)
H80.84360.84950.56360.025*
C90.7924 (2)0.9291 (3)0.45295 (18)0.0283 (7)
H90.84410.97120.44790.034*
C100.7182 (2)0.9418 (3)0.39173 (17)0.0286 (7)
H100.71870.99300.34500.034*
C110.6436 (2)0.8797 (3)0.39911 (17)0.0275 (7)
H110.59220.88880.35750.033*
C120.64319 (19)0.8035 (3)0.46733 (17)0.0221 (6)
H120.59150.76010.47140.026*
C130.59173 (17)0.7011 (3)0.65848 (15)0.0149 (5)
C140.52338 (17)0.6196 (3)0.61153 (16)0.0177 (5)
H140.53310.55570.57240.021*
C150.44184 (17)0.6309 (3)0.62125 (17)0.0216 (6)
H150.39620.57470.58910.026*
C160.42711 (18)0.7244 (3)0.67808 (18)0.0240 (6)
H160.37130.73200.68480.029*
C170.49320 (19)0.8064 (3)0.72480 (18)0.0235 (6)
H170.48290.87080.76340.028*
C180.57512 (17)0.7944 (3)0.71517 (16)0.0174 (5)
H180.62050.85070.74770.021*
C190.68113 (16)0.3687 (3)0.61824 (15)0.0144 (5)
C200.67628 (18)0.2192 (3)0.57931 (16)0.0183 (6)
H20A0.73240.19790.57000.022*
H20B0.63320.22380.52730.022*
C210.65302 (16)0.0911 (3)0.62635 (15)0.0164 (5)
H21A0.60500.12220.64700.020*
H21B0.63240.00820.58980.020*
C220.72532 (16)0.0370 (3)0.69461 (15)0.0141 (5)
C230.82697 (16)0.0973 (3)0.82208 (14)0.0141 (5)
H230.86680.02380.80940.017*
C240.87745 (18)0.2358 (3)0.85281 (15)0.0211 (6)
H24A0.90530.27190.81320.025*
H24B0.83770.31270.86080.025*
C250.94531 (18)0.2078 (3)0.93013 (16)0.0205 (6)
H25A0.97330.30160.95080.025*
H25B0.98970.14160.92060.025*
C260.90676 (18)0.1391 (3)0.99144 (16)0.0205 (6)
H26A0.86790.21041.00620.025*
H26B0.95320.11511.03940.025*
C270.85695 (18)−0.0001 (3)0.95937 (15)0.0209 (6)
H27A0.8968−0.07490.94950.025*
H27B0.8302−0.03980.99900.025*
C280.78805 (16)0.0314 (3)0.88344 (15)0.0181 (5)
H28A0.74560.10050.89420.022*
H28B0.7579−0.06060.86280.022*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn0.01279 (11)0.00991 (10)0.01152 (10)0.00003 (6)0.00211 (7)0.00066 (6)
O10.0210 (10)0.0116 (8)0.0127 (9)−0.0004 (7)0.0027 (8)0.0005 (7)
O20.0217 (10)0.0125 (8)0.0159 (10)0.0022 (7)0.0054 (8)−0.0001 (7)
O30.0180 (10)0.0100 (8)0.0173 (9)0.0000 (7)−0.0006 (8)−0.0013 (7)
N10.0185 (12)0.0107 (10)0.0141 (11)0.0035 (8)−0.0005 (9)0.0009 (8)
C10.0144 (13)0.0116 (11)0.0142 (12)0.0001 (9)0.0033 (10)0.0034 (9)
C20.0194 (14)0.0130 (12)0.0199 (14)−0.0009 (10)0.0016 (12)−0.0001 (10)
C30.0270 (16)0.0184 (13)0.0247 (16)−0.0065 (12)−0.0059 (13)0.0014 (12)
C40.0130 (14)0.0244 (14)0.0386 (18)−0.0020 (11)−0.0021 (13)0.0127 (13)
C50.0193 (15)0.0237 (14)0.0355 (17)0.0050 (11)0.0141 (13)0.0087 (12)
C60.0219 (14)0.0209 (13)0.0174 (14)0.0021 (11)0.0080 (12)0.0041 (10)
C70.0222 (14)0.0103 (11)0.0133 (13)−0.0007 (10)0.0035 (11)−0.0002 (9)
C80.0249 (15)0.0187 (13)0.0197 (14)−0.0012 (11)0.0055 (12)0.0011 (11)
C90.0340 (17)0.0231 (15)0.0334 (18)−0.0037 (12)0.0184 (15)0.0056 (12)
C100.0446 (19)0.0237 (15)0.0207 (15)0.0027 (13)0.0142 (14)0.0055 (12)
C110.0346 (18)0.0283 (15)0.0155 (14)0.0050 (13)0.0000 (13)0.0046 (12)
C120.0217 (15)0.0250 (15)0.0184 (14)−0.0017 (11)0.0037 (12)0.0030 (11)
C130.0148 (13)0.0130 (12)0.0161 (13)0.0002 (9)0.0029 (11)0.0039 (9)
C140.0168 (14)0.0164 (12)0.0181 (13)−0.0002 (10)0.0017 (11)0.0005 (10)
C150.0145 (14)0.0231 (14)0.0238 (15)−0.0023 (11)−0.0005 (12)0.0012 (11)
C160.0155 (14)0.0279 (15)0.0293 (16)0.0024 (11)0.0074 (13)0.0027 (12)
C170.0250 (16)0.0251 (15)0.0228 (15)0.0000 (11)0.0105 (13)−0.0028 (11)
C180.0161 (14)0.0185 (13)0.0167 (13)−0.0026 (10)0.0030 (11)−0.0001 (10)
C190.0135 (13)0.0123 (11)0.0152 (13)0.0004 (10)0.0004 (10)−0.0012 (10)
C200.0253 (15)0.0131 (12)0.0139 (13)0.0005 (10)0.0011 (11)−0.0006 (10)
C210.0175 (13)0.0107 (11)0.0173 (13)0.0002 (9)−0.0014 (11)−0.0003 (9)
C220.0130 (12)0.0133 (11)0.0163 (13)−0.0010 (9)0.0049 (10)0.0015 (10)
C230.0145 (13)0.0119 (11)0.0134 (12)0.0013 (9)−0.0005 (10)−0.0005 (9)
C240.0260 (15)0.0170 (13)0.0166 (14)−0.0061 (11)−0.0004 (12)0.0000 (11)
C250.0220 (15)0.0194 (13)0.0163 (14)−0.0064 (11)−0.0006 (12)0.0003 (10)
C260.0220 (15)0.0230 (13)0.0149 (13)−0.0024 (11)0.0024 (11)−0.0006 (11)
C270.0229 (15)0.0229 (13)0.0163 (14)−0.0042 (11)0.0041 (12)0.0044 (11)
C280.0154 (14)0.0192 (13)0.0190 (14)−0.0008 (10)0.0037 (11)−0.0014 (10)

Geometric parameters (Å, °)

Sn—O12.1658 (17)C13—C141.401 (4)
Sn—O3i2.3178 (16)C14—C151.386 (4)
Sn—C12.138 (2)C14—H140.9500
Sn—C72.129 (3)C15—C161.388 (4)
Sn—C132.130 (3)C15—H150.9500
O1—C191.291 (3)C16—C171.379 (4)
O2—C191.239 (3)C16—H160.9500
O3—C221.256 (3)C17—C181.392 (4)
O3—Snii2.3178 (16)C17—H170.9500
N1—C221.316 (3)C18—H180.9500
N1—C231.460 (3)C19—C201.520 (3)
N1—H10.855 (10)C20—C211.540 (3)
C1—C21.392 (4)C20—H20A0.9900
C1—C61.394 (3)C20—H20B0.9900
C2—C31.395 (4)C21—C221.514 (3)
C2—H20.9500C21—H21A0.9900
C3—C41.386 (4)C21—H21B0.9900
C3—H30.9500C23—C281.522 (3)
C4—C51.379 (4)C23—C241.522 (3)
C4—H40.9500C23—H231.0000
C5—C61.386 (4)C24—C251.520 (4)
C5—H50.9500C24—H24A0.9900
C6—H60.9500C24—H24B0.9900
C7—C121.396 (4)C25—C261.528 (4)
C7—C81.399 (4)C25—H25A0.9900
C8—C91.388 (4)C25—H25B0.9900
C8—H80.9500C26—C271.528 (4)
C9—C101.384 (4)C26—H26A0.9900
C9—H90.9500C26—H26B0.9900
C10—C111.377 (4)C27—C281.517 (4)
C10—H100.9500C27—H27A0.9900
C11—C121.392 (4)C27—H27B0.9900
C11—H110.9500C28—H28A0.9900
C12—H120.9500C28—H28B0.9900
C13—C181.396 (4)
C13—Sn—C7112.66 (10)C15—C16—H16119.9
C13—Sn—C1130.70 (10)C16—C17—C18119.8 (3)
C7—Sn—C1115.46 (10)C16—C17—H17120.1
C13—Sn—O196.45 (8)C18—C17—H17120.1
C7—Sn—O189.56 (8)C17—C18—C13121.1 (3)
C1—Sn—O194.03 (8)C17—C18—H18119.4
C13—Sn—O3i88.75 (8)C13—C18—H18119.4
C7—Sn—O3i88.06 (8)O2—C19—O1123.4 (2)
C1—Sn—O3i82.82 (8)O2—C19—C20122.1 (2)
O1—Sn—O3i174.78 (6)O1—C19—C20114.6 (2)
C19—O1—Sn113.42 (15)C19—C20—C21115.3 (2)
C22—O3—Snii139.03 (17)C19—C20—H20A108.5
C22—N1—C23124.5 (2)C21—C20—H20A108.5
C22—N1—H1118 (2)C19—C20—H20B108.5
C23—N1—H1117 (2)C21—C20—H20B108.5
C2—C1—C6118.3 (2)H20A—C20—H20B107.5
C2—C1—Sn122.91 (19)C22—C21—C20115.1 (2)
C6—C1—Sn118.78 (19)C22—C21—H21A108.5
C1—C2—C3120.6 (3)C20—C21—H21A108.5
C1—C2—H2119.7C22—C21—H21B108.5
C3—C2—H2119.7C20—C21—H21B108.5
C4—C3—C2120.2 (3)H21A—C21—H21B107.5
C4—C3—H3119.9O3—C22—N1120.2 (2)
C2—C3—H3119.9O3—C22—C21122.6 (2)
C5—C4—C3119.6 (3)N1—C22—C21117.2 (2)
C5—C4—H4120.2N1—C23—C28111.0 (2)
C3—C4—H4120.2N1—C23—C24108.8 (2)
C4—C5—C6120.3 (3)C28—C23—C24111.3 (2)
C4—C5—H5119.8N1—C23—H23108.6
C6—C5—H5119.8C28—C23—H23108.6
C5—C6—C1121.0 (3)C24—C23—H23108.6
C5—C6—H6119.5C25—C24—C23111.5 (2)
C1—C6—H6119.5C25—C24—H24A109.3
C12—C7—C8117.8 (2)C23—C24—H24A109.3
C12—C7—Sn120.59 (19)C25—C24—H24B109.3
C8—C7—Sn121.5 (2)C23—C24—H24B109.3
C9—C8—C7120.6 (3)H24A—C24—H24B108.0
C9—C8—H8119.7C24—C25—C26111.6 (2)
C7—C8—H8119.7C24—C25—H25A109.3
C10—C9—C8120.8 (3)C26—C25—H25A109.3
C10—C9—H9119.6C24—C25—H25B109.3
C8—C9—H9119.6C26—C25—H25B109.3
C11—C10—C9119.4 (3)H25A—C25—H25B108.0
C11—C10—H10120.3C25—C26—C27110.9 (2)
C9—C10—H10120.3C25—C26—H26A109.4
C10—C11—C12120.2 (3)C27—C26—H26A109.4
C10—C11—H11119.9C25—C26—H26B109.4
C12—C11—H11119.9C27—C26—H26B109.4
C11—C12—C7121.2 (3)H26A—C26—H26B108.0
C11—C12—H12119.4C28—C27—C26110.8 (2)
C7—C12—H12119.4C28—C27—H27A109.5
C18—C13—C14118.0 (2)C26—C27—H27A109.5
C18—C13—Sn123.41 (19)C28—C27—H27B109.5
C14—C13—Sn118.57 (19)C26—C27—H27B109.5
C15—C14—C13121.0 (3)H27A—C27—H27B108.1
C15—C14—H14119.5C27—C28—C23110.7 (2)
C13—C14—H14119.5C27—C28—H28A109.5
C14—C15—C16119.8 (3)C23—C28—H28A109.5
C14—C15—H15120.1C27—C28—H28B109.5
C16—C15—H15120.1C23—C28—H28B109.5
C17—C16—C15120.3 (3)H28A—C28—H28B108.1
C17—C16—H16119.9
C13—Sn—O1—C19−66.35 (18)C1—Sn—C13—C1861.5 (2)
C7—Sn—O1—C19−179.11 (18)O1—Sn—C13—C18162.4 (2)
C1—Sn—O1—C1965.40 (18)O3i—Sn—C13—C18−18.0 (2)
O3i—Sn—O1—C19118.1 (7)C7—Sn—C13—C1471.7 (2)
C13—Sn—C1—C2−47.4 (2)C1—Sn—C13—C14−121.5 (2)
C7—Sn—C1—C2119.1 (2)O1—Sn—C13—C14−20.6 (2)
O1—Sn—C1—C2−149.5 (2)O3i—Sn—C13—C14159.04 (19)
O3i—Sn—C1—C234.7 (2)C18—C13—C14—C15−0.2 (4)
C13—Sn—C1—C6134.47 (19)Sn—C13—C14—C15−177.4 (2)
C7—Sn—C1—C6−59.0 (2)C13—C14—C15—C160.2 (4)
O1—Sn—C1—C632.4 (2)C14—C15—C16—C170.1 (4)
O3i—Sn—C1—C6−143.4 (2)C15—C16—C17—C18−0.4 (4)
C6—C1—C2—C31.5 (4)C16—C17—C18—C130.4 (4)
Sn—C1—C2—C3−176.64 (19)C14—C13—C18—C17−0.1 (4)
C1—C2—C3—C40.2 (4)Sn—C13—C18—C17176.9 (2)
C2—C3—C4—C5−1.2 (4)Sn—O1—C19—O26.9 (3)
C3—C4—C5—C60.5 (4)Sn—O1—C19—C20−172.26 (16)
C4—C5—C6—C11.3 (4)O2—C19—C20—C219.0 (4)
C2—C1—C6—C5−2.3 (4)O1—C19—C20—C21−171.8 (2)
Sn—C1—C6—C5175.95 (19)C19—C20—C21—C22−77.3 (3)
C13—Sn—C7—C12−28.0 (2)Snii—O3—C22—N1172.88 (17)
C1—Sn—C7—C12163.02 (19)Snii—O3—C22—C21−6.3 (4)
O1—Sn—C7—C1268.8 (2)C23—N1—C22—O3−3.6 (4)
O3i—Sn—C7—C12−115.9 (2)C23—N1—C22—C21175.7 (2)
C13—Sn—C7—C8148.0 (2)C20—C21—C22—O3−122.2 (3)
C1—Sn—C7—C8−20.9 (2)C20—C21—C22—N158.5 (3)
O1—Sn—C7—C8−115.2 (2)C22—N1—C23—C28−81.0 (3)
O3i—Sn—C7—C860.2 (2)C22—N1—C23—C24156.2 (2)
C12—C7—C8—C9−1.1 (4)N1—C23—C24—C25177.6 (2)
Sn—C7—C8—C9−177.3 (2)C28—C23—C24—C2555.0 (3)
C7—C8—C9—C101.4 (4)C23—C24—C25—C26−54.0 (3)
C8—C9—C10—C11−0.5 (4)C24—C25—C26—C2754.6 (3)
C9—C10—C11—C12−0.6 (4)C25—C26—C27—C28−56.3 (3)
C10—C11—C12—C70.8 (4)C26—C27—C28—C2357.3 (3)
C8—C7—C12—C110.1 (4)N1—C23—C28—C27−178.0 (2)
Sn—C7—C12—C11176.3 (2)C24—C23—C28—C27−56.7 (3)
C7—Sn—C13—C18−105.3 (2)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.86 (1)1.93 (2)2.732 (3)155 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2713).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolzhenko, A. V., Syropyatov, B. Ya., Koz’minykh, V. O., Kolotova, N. V., Zakhmatov, A. V. & Borodin, A. Yu. (2003). Pharm. Chem. J.37, 407–408.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Imtiaz-ud-Din, Raqiqt-ul-Rasool,, Bhatti, M. H. & Ng, S. W. (2010). Acta Cryst. E66, m931. [PMC free article] [PubMed]
  • Ng, S. W., Chen, W. & Kumar Das, V. G. (1986). J. Organomet. Chem.345, 59–64.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tiekink, E. R. T. (1991). Appl. Organomet. Chem.5, 1–23.
  • Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  • Willem, R., Verbruggen, I., Gielen, M., Biesemans, M., Mahieu, B., Basu Baul, T. S. & Tiekink, E. R. T. (1998). Organometallics, 17, 5758–5766.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography