PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1216.
Published online 2010 September 8. doi:  10.1107/S1600536810035002
PMCID: PMC2983214

catena-Poly[[(1,10-phenanthroline-κ2 N,N′)copper(I)]-μ-thio­cyanato-κ2 N:S]

Abstract

In the title complex, [Cu(NCS)(C12H8N2)]n, the CuI ion is in a distorted tetra­hedral CuN3S coordination geometry. The thio­cyanate ligand acts as bridging ligand, forming chains along [100]. A crystallographic mirror plane runs through the CuI ion, the thio­cyanate ligand and the middle of the phenanthroline ligand.

Related literature

For related structures, see: Shi et al. (2006 [triangle]); Tadashi et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1216-scheme1.jpg

Experimental

Crystal data

  • [Cu(NCS)(C12H8N2)]
  • M r = 301.82
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1216-efi6.jpg
  • a = 7.9744 (15) Å
  • b = 11.948 (2) Å
  • c = 12.956 (2) Å
  • V = 1234.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.92 mm−1
  • T = 298 K
  • 0.23 × 0.15 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.667, T max = 0.762
  • 6226 measured reflections
  • 1421 independent reflections
  • 1146 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.080
  • S = 1.03
  • 1421 reflections
  • 89 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035002/lh5123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035002/lh5123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province of China (grant No. ZR2009BL002).

supplementary crystallographic information

Comment

1,10-phenanthroline and thiocyanate anions play an important role in modern coordination chemistry and many complexes have been published with them as ligands (e.g. Shi et al., 2006; Tadashi et al. (1990). We originally tried to prepare a new divalent Cu(II) complex with these two ligands, but the title monovalent Cu(I) complex was fortuitously obtained. Herein we report its crystal structure.

Fig. 1 shows part of the title complex. The CuI ion is coordinated by three N atoms and one S atom, and is in a distorted tetrahedral coordination environment. The thiocyanate ligand acts as bridging forming a 1-D chain with a Cu···Cu distance of 5.9960 (9) Å.

Experimental

A 5 ml H2O solution of Cu(ClO4)26H2O (0.2000 g, 0.54 mmol) was added to a 10 ml methanol solution of 1,10-phenanthroline (0.1070 g, 0.54 mmol), and the mixture was stirred for a few minutes, then a 5 ml H2O solution of NaNCS (0.0875 g, 1.08 mmol) was added dropwise and the mixture was stirred for a few minutes and then placed in a Teflon-lined autoclave and heated at 433K for 144 h at autogenous pressure. After the contents of the autoclave were cooled to room temperature, the red single crystals were obtained.

Refinement

All H atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å, Uiso = 1.2Ueq(C).

Figures

Fig. 1.
Part of the 1-D chain of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (i): x, -y + 3/2, z; (ii): x - 1/2, y, -z + 3/2; (iii): x + 1/2, y, -z + 3/2]

Crystal data

[Cu(NCS)(C12H8N2)]F(000) = 608
Mr = 301.82Dx = 1.624 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2278 reflections
a = 7.9744 (15) Åθ = 2.3–27.9°
b = 11.948 (2) ŵ = 1.92 mm1
c = 12.956 (2) ÅT = 298 K
V = 1234.4 (4) Å3Block, red
Z = 40.23 × 0.15 × 0.15 mm

Data collection

Bruker SMART APEX CCD diffractometer1421 independent reflections
Radiation source: fine-focus sealed tube1146 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→10
Tmin = 0.667, Tmax = 0.762k = −15→15
6226 measured reflectionsl = −5→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.080w = 1/[σ2(Fo2) + (0.0508P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1421 reflectionsΔρmax = 0.29 e Å3
89 parametersΔρmin = −0.28 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.13936 (17)0.68993 (15)1.13076 (12)0.0406 (4)
C20.1011 (2)0.63175 (18)1.22243 (13)0.0543 (5)
C30.0628 (3)0.69444 (18)1.31338 (13)0.0712 (6)
H30.03720.65651.37400.085*
C40.1051 (2)0.51479 (18)1.21873 (16)0.0669 (6)
H40.07920.47311.27720.080*
C50.1468 (2)0.46262 (19)1.12958 (17)0.0648 (6)
H50.14910.38491.12620.078*
C60.1862 (2)0.52657 (16)1.04275 (16)0.0528 (5)
H60.21750.48950.98260.063*
C70.5834 (3)0.75000.79202 (17)0.0436 (5)
Cu10.23713 (4)0.75000.92283 (2)0.04865 (16)
N10.6286 (2)0.75000.70801 (14)0.0487 (5)
N20.18111 (17)0.63783 (12)1.04164 (11)0.0412 (3)
S10.52660 (9)0.75000.91372 (4)0.0702 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0342 (8)0.0577 (10)0.0300 (8)−0.0010 (7)0.0005 (6)0.0033 (7)
C20.0467 (10)0.0768 (13)0.0392 (9)−0.0047 (9)0.0023 (8)0.0131 (9)
C30.0708 (12)0.1093 (18)0.0335 (9)−0.0073 (11)0.0146 (9)0.0111 (9)
C40.0664 (14)0.0748 (15)0.0593 (13)−0.0081 (10)−0.0013 (10)0.0283 (11)
C50.0638 (13)0.0510 (11)0.0796 (16)−0.0007 (10)−0.0080 (12)0.0169 (11)
C60.0548 (11)0.0519 (11)0.0517 (11)0.0028 (9)−0.0052 (9)−0.0009 (9)
C70.0417 (12)0.0567 (15)0.0323 (12)0.000−0.0043 (10)0.000
Cu10.0589 (3)0.0631 (3)0.0240 (2)0.0000.00043 (12)0.000
N10.0563 (13)0.0619 (13)0.0278 (9)0.0000.0038 (9)0.000
N20.0423 (7)0.0469 (8)0.0345 (7)0.0000 (6)−0.0012 (6)0.0021 (6)
S10.0499 (4)0.1360 (8)0.0245 (3)0.0000.0024 (3)0.000

Geometric parameters (Å, °)

C1—N21.353 (2)C5—H50.9300
C1—C21.410 (2)C6—N21.330 (2)
C1—C1i1.435 (4)C6—H60.9300
C2—C41.399 (3)C7—N11.147 (3)
C2—C31.429 (2)C7—S11.640 (2)
C3—C3i1.328 (4)Cu1—N1ii1.9033 (19)
C3—H30.9300Cu1—N2i2.0893 (14)
C4—C51.354 (3)Cu1—N22.0893 (14)
C4—H40.9300Cu1—S12.3113 (9)
C5—C61.396 (3)N1—Cu1iii1.9033 (19)
N2—C1—C2123.04 (17)N2—C6—C5123.3 (2)
N2—C1—C1i117.39 (9)N2—C6—H6118.4
C2—C1—C1i119.55 (11)C5—C6—H6118.4
C4—C2—C1117.32 (19)N1—C7—S1177.7 (2)
C4—C2—C3123.83 (19)N1ii—Cu1—N2i123.98 (6)
C1—C2—C3118.84 (18)N1ii—Cu1—N2123.98 (6)
C3i—C3—C2121.60 (11)N2i—Cu1—N279.80 (8)
C3i—C3—H3119.2N1ii—Cu1—S1114.12 (6)
C2—C3—H3119.2N2i—Cu1—S1104.55 (4)
C5—C4—C2119.65 (19)N2—Cu1—S1104.55 (4)
C5—C4—H4120.2C7—N1—Cu1iii171.3 (2)
C2—C4—H4120.2C6—N2—C1117.26 (16)
C4—C5—C6119.4 (2)C6—N2—Cu1129.99 (13)
C4—C5—H5120.3C1—N2—Cu1112.71 (11)
C6—C5—H5120.3C7—S1—Cu1108.96 (9)
N2—C1—C2—C4−0.9 (2)C1i—C1—N2—C6177.93 (12)
C1i—C1—C2—C4−179.14 (12)C2—C1—N2—Cu1−178.16 (12)
N2—C1—C2—C3178.35 (16)C1i—C1—N2—Cu10.08 (11)
C1i—C1—C2—C30.1 (2)N1ii—Cu1—N2—C658.10 (18)
C4—C2—C3—C3i179.09 (13)N2i—Cu1—N2—C6−177.60 (14)
C1—C2—C3—C3i−0.2 (2)S1—Cu1—N2—C6−75.07 (16)
C1—C2—C4—C50.9 (3)N1ii—Cu1—N2—C1−124.40 (10)
C3—C2—C4—C5−178.38 (19)N2i—Cu1—N2—C1−0.09 (13)
C2—C4—C5—C60.4 (3)S1—Cu1—N2—C1102.44 (10)
C4—C5—C6—N2−1.7 (3)N1—C7—S1—Cu1180.00 (2)
S1—C7—N1—Cu1iii0.00 (2)N1ii—Cu1—S1—C70.0
C5—C6—N2—C11.7 (3)N2i—Cu1—S1—C7−138.50 (4)
C5—C6—N2—Cu1179.08 (13)N2—Cu1—S1—C7138.50 (4)
C2—C1—N2—C6−0.3 (2)

Symmetry codes: (i) x, −y+3/2, z; (ii) x−1/2, y, −z+3/2; (iii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5123).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380. [PubMed]
  • Tadashi, T., Naofumi, W., Michio, N., Yoneichiro, M., Mitsuo, M., Shigeru, O. & Yoshihiko, S. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography