PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1328.
Published online 2010 September 30. doi:  10.1107/S1600536810037487
PMCID: PMC2983213

Tetra-μ-acetato-κ8 O:O′-bis{[(E)-2-styrylpyrazine-κN 3]copper(II)}

Abstract

In the binuclear title compound, [Cu2(CH3COO)4(C12H10N2)2], the copper(II) ions are coordinated by four O atoms from two pairs of bridging acetate ligands and one N atom from a (E)-2-styryl­pyrazine ligand in a distorted tetra­hedral geometry. The structure displays no hydrogen bonding or π–π stacking inter­actions between the discrete binuclear entities.

Related literature

For heterocyclic ligands as building tectons of the supra­molecular lattice in inorganic-organic coordination chemistry, see: Batten (2001 [triangle]); Kitagawa & Matsuda (2007 [triangle]); Moulton & Zaworotko (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1328-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C2H3O2)4(C12H10N2)2]
  • M r = 727.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1328-efi1.jpg
  • a = 10.519 (4) Å
  • b = 10.755 (4) Å
  • c = 15.924 (6) Å
  • α = 80.829 (6)°
  • β = 71.321 (6)°
  • γ = 74.300 (6)°
  • V = 1637.7 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.35 mm−1
  • T = 293 K
  • 0.24 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.750, T max = 1.000
  • 9491 measured reflections
  • 6662 independent reflections
  • 3702 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.109
  • S = 0.99
  • 6662 reflections
  • 419 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037487/jh2199sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037487/jh2199Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Heterocyclic derivative ligands, as the excellent building tectons of supramolecular lattice, are very popular in the inorganic-organic coordination chemistry (Batten (2001); Kitagawa et al. (2007); Moulton et al. (2001)).

In this paper, (E)-2-styrylpyrazine was employed as a terminal ligand to assembly with Cu(OAc)2 to afford a binuclear complex, in which the Cu(II) displays a tetrahedral coordination geometry, and coordinated by four oxygen atoms from two pairs of acetates and one nitrogen donor from one (E)-2-styrylpyrazine ligand (see figure 1). The dimeric cage can be properly described as the paddle-wheel unit.

Further investigation on its supramolecular interaction reveals that no secondary contact such as hydrogen bonding and pi···pi stacking interaction is observed between these diecrete units.

Experimental

A water (8 ml) solution containing Cu(OAc)2 (18.1 mg, 0.1 mmol) and (E)-2-styrylpyrazine (18.2 mg, 0.1 mmol) was heated to 100 \%C for 24 h and subsequently cooled to room temperature at a rate of 1 \%C/h. Blue block shape crystals were obtained.

Refinement

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distanceof 0.93 \%A, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Representation of this complex with atomic labels of asymmetric unit and coordination sphere, shown with 30% probability displacement ellipsoids.

Crystal data

[Cu2(C2H3O2)4(C12H10N2)2]Z = 2
Mr = 727.70F(000) = 748
Triclinic, P1Dx = 1.476 Mg m3
a = 10.519 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.755 (4) ÅCell parameters from 715 reflections
c = 15.924 (6) Åθ = 2.5–23.8°
α = 80.829 (6)°µ = 1.35 mm1
β = 71.321 (6)°T = 293 K
γ = 74.300 (6)°Block, blue
V = 1637.7 (10) Å30.24 × 0.20 × 0.16 mm

Data collection

Bruker APEXII CCD area-detector diffractometer6662 independent reflections
Radiation source: fine-focus sealed tube3702 reflections with I > 2σ(I)
graphiteRint = 0.031
phi and ω scansθmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −7→13
Tmin = 0.750, Tmax = 1.000k = −12→13
9491 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.040P)2] where P = (Fo2 + 2Fc2)/3
6662 reflections(Δ/σ)max = 0.001
419 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.75479 (5)0.39534 (4)0.21433 (3)0.04088 (17)
Cu20.66890 (5)0.61865 (4)0.28275 (3)0.04079 (17)
O10.8527 (3)0.3387 (3)0.30458 (19)0.0606 (9)
O20.7892 (3)0.5310 (3)0.35870 (18)0.0555 (8)
O30.9072 (3)0.4732 (2)0.13965 (18)0.0528 (8)
O40.8294 (3)0.6656 (2)0.19611 (18)0.0522 (8)
O50.5672 (3)0.6635 (3)0.19240 (18)0.0528 (8)
O60.6483 (3)0.4740 (3)0.13148 (18)0.0542 (8)
O70.5860 (3)0.3590 (2)0.30257 (19)0.0568 (8)
O80.5185 (3)0.5471 (3)0.36340 (18)0.0549 (8)
N10.8234 (3)0.2056 (3)0.1613 (2)0.0345 (8)
N20.9035 (3)−0.0403 (3)0.1022 (2)0.0394 (8)
N30.5837 (3)0.8058 (3)0.3410 (2)0.0356 (8)
N40.4639 (3)1.0502 (3)0.4028 (2)0.0399 (8)
C10.6179 (4)−0.0523 (4)−0.1111 (3)0.0513 (12)
H10.57710.0294−0.09020.062*
C20.5709 (5)−0.0916 (5)−0.1708 (3)0.0646 (13)
H20.4991−0.0361−0.19000.078*
C30.6274 (6)−0.2106 (6)−0.2026 (3)0.0778 (16)
H30.5931−0.2376−0.24190.093*
C40.7352 (6)−0.2896 (5)−0.1760 (4)0.0830 (18)
H40.7771−0.3698−0.19920.100*
C50.7832 (5)−0.2519 (4)−0.1149 (3)0.0672 (14)
H50.8553−0.3076−0.09620.081*
C60.7237 (4)−0.1307 (4)−0.0814 (3)0.0440 (10)
C70.7775 (4)−0.0940 (4)−0.0172 (3)0.0453 (11)
H70.8378−0.15970.00620.054*
C80.7499 (4)0.0227 (3)0.0114 (2)0.0403 (10)
H80.68790.0893−0.01000.048*
C90.8096 (4)0.0531 (3)0.0735 (2)0.0343 (9)
C100.9545 (4)−0.0093 (4)0.1601 (3)0.0427 (10)
H101.0191−0.07250.18150.051*
C110.9155 (4)0.1129 (4)0.1895 (3)0.0402 (10)
H110.95450.13040.22990.048*
C120.7714 (4)0.1761 (3)0.1035 (2)0.0390 (10)
H120.70710.24000.08220.047*
C130.4607 (4)0.8311 (4)0.4013 (3)0.0415 (10)
H130.41440.76500.42330.050*
C140.3986 (4)0.9537 (4)0.4329 (2)0.0363 (9)
C150.5867 (4)1.0225 (4)0.3440 (3)0.0414 (10)
H150.63461.08760.32280.050*
C160.6474 (4)0.9020 (4)0.3128 (2)0.0398 (10)
H160.73430.88790.27130.048*
C170.2624 (4)0.9800 (4)0.4969 (2)0.0435 (11)
H170.21740.91260.51630.052*
C180.1986 (4)1.0933 (4)0.5294 (2)0.0401 (10)
H180.24621.15880.50970.048*
C190.0615 (4)1.1276 (4)0.5929 (3)0.0428 (10)
C20−0.0289 (4)1.0469 (5)0.6190 (3)0.0556 (12)
H20−0.00130.96530.59750.067*
C21−0.1587 (5)1.0852 (6)0.6760 (3)0.0763 (16)
H21−0.21771.02920.69300.092*
C22−0.2021 (6)1.2048 (7)0.7080 (3)0.0865 (19)
H22−0.29121.23100.74530.104*
C23−0.1136 (6)1.2863 (5)0.6848 (4)0.0830 (18)
H23−0.14181.36700.70770.100*
C240.0172 (5)1.2479 (4)0.6276 (3)0.0586 (13)
H240.07671.30340.61190.070*
C250.8544 (5)0.4148 (4)0.3563 (3)0.0509 (12)
C260.9394 (6)0.3622 (4)0.4186 (3)0.0818 (17)
H26A0.95640.43260.44040.123*
H26B1.02570.30810.38790.123*
H26C0.89080.31210.46770.123*
C270.9178 (4)0.5848 (4)0.1444 (3)0.0418 (10)
C281.0436 (4)0.6262 (4)0.0839 (3)0.0619 (13)
H28A1.12150.58440.10530.093*
H28B1.02890.71850.08270.093*
H28C1.06080.60230.02500.093*
C290.5753 (4)0.5882 (4)0.1377 (3)0.0453 (11)
C300.4905 (5)0.6373 (4)0.0744 (3)0.0737 (15)
H30A0.42350.71530.09430.111*
H30B0.44400.57290.07230.111*
H30C0.54960.65510.01620.111*
C310.5038 (4)0.4367 (4)0.3580 (3)0.0457 (11)
C320.3805 (5)0.3961 (4)0.4214 (3)0.0717 (16)
H32A0.36540.42280.47930.108*
H32B0.39560.30360.42470.108*
H32C0.30100.43590.40120.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0487 (4)0.0295 (3)0.0416 (3)−0.0043 (2)−0.0094 (3)−0.0116 (2)
Cu20.0456 (4)0.0307 (3)0.0416 (3)−0.0063 (2)−0.0045 (3)−0.0122 (2)
O10.087 (2)0.0403 (17)0.058 (2)−0.0011 (16)−0.0324 (19)−0.0128 (14)
O20.076 (2)0.0442 (17)0.0532 (19)−0.0086 (16)−0.0294 (18)−0.0118 (14)
O30.0512 (19)0.0387 (16)0.0585 (19)−0.0103 (14)0.0030 (16)−0.0153 (14)
O40.0499 (19)0.0374 (16)0.0569 (19)−0.0111 (14)0.0055 (16)−0.0112 (14)
O50.059 (2)0.0422 (16)0.0555 (19)0.0028 (14)−0.0215 (17)−0.0150 (14)
O60.066 (2)0.0397 (16)0.0569 (19)0.0022 (15)−0.0255 (17)−0.0144 (14)
O70.065 (2)0.0413 (16)0.0542 (18)−0.0195 (15)0.0069 (17)−0.0151 (14)
O80.057 (2)0.0413 (17)0.0573 (19)−0.0153 (15)0.0051 (16)−0.0166 (14)
N10.035 (2)0.0307 (17)0.0353 (19)−0.0036 (15)−0.0090 (17)−0.0041 (14)
N20.040 (2)0.0305 (17)0.046 (2)−0.0077 (16)−0.0092 (18)−0.0083 (15)
N30.032 (2)0.0368 (18)0.0346 (19)−0.0068 (15)−0.0047 (17)−0.0071 (15)
N40.044 (2)0.0348 (18)0.043 (2)−0.0095 (16)−0.0126 (18)−0.0083 (15)
C10.048 (3)0.056 (3)0.052 (3)−0.008 (2)−0.019 (3)−0.012 (2)
C20.056 (3)0.084 (4)0.060 (3)−0.009 (3)−0.031 (3)−0.011 (3)
C30.084 (4)0.092 (4)0.077 (4)−0.023 (4)−0.037 (4)−0.031 (3)
C40.104 (5)0.068 (4)0.095 (4)−0.012 (3)−0.043 (4)−0.041 (3)
C50.065 (3)0.047 (3)0.099 (4)0.003 (2)−0.041 (3)−0.028 (3)
C60.041 (3)0.049 (2)0.044 (2)−0.010 (2)−0.012 (2)−0.010 (2)
C70.039 (3)0.042 (2)0.057 (3)−0.005 (2)−0.016 (2)−0.013 (2)
C80.040 (3)0.035 (2)0.046 (2)−0.0035 (19)−0.015 (2)−0.0061 (18)
C90.032 (2)0.034 (2)0.034 (2)−0.0104 (18)−0.0022 (19)−0.0044 (17)
C100.041 (3)0.039 (2)0.049 (3)−0.005 (2)−0.018 (2)−0.002 (2)
C110.045 (3)0.038 (2)0.040 (2)−0.007 (2)−0.016 (2)−0.0070 (18)
C120.040 (3)0.034 (2)0.041 (2)−0.0027 (19)−0.014 (2)−0.0068 (18)
C130.041 (3)0.037 (2)0.049 (3)−0.0156 (19)−0.009 (2)−0.0104 (19)
C140.037 (2)0.037 (2)0.040 (2)−0.0072 (18)−0.014 (2)−0.0119 (18)
C150.049 (3)0.036 (2)0.042 (2)−0.016 (2)−0.010 (2)−0.0052 (19)
C160.040 (3)0.043 (2)0.036 (2)−0.013 (2)−0.009 (2)−0.0017 (19)
C170.041 (3)0.043 (2)0.049 (3)−0.017 (2)−0.006 (2)−0.013 (2)
C180.040 (3)0.041 (2)0.042 (2)−0.0088 (19)−0.012 (2)−0.0110 (19)
C190.042 (3)0.046 (2)0.038 (2)0.000 (2)−0.015 (2)−0.0087 (19)
C200.044 (3)0.080 (3)0.043 (3)−0.013 (3)−0.009 (2)−0.018 (2)
C210.051 (3)0.130 (5)0.053 (3)−0.028 (3)−0.012 (3)−0.015 (3)
C220.050 (4)0.140 (6)0.052 (3)0.021 (4)−0.015 (3)−0.032 (4)
C230.079 (4)0.075 (4)0.075 (4)0.025 (3)−0.020 (4)−0.033 (3)
C240.061 (3)0.048 (3)0.055 (3)0.008 (2)−0.013 (3)−0.013 (2)
C250.067 (3)0.044 (3)0.043 (3)−0.012 (2)−0.020 (3)−0.004 (2)
C260.116 (5)0.066 (3)0.076 (4)0.001 (3)−0.058 (4)−0.014 (3)
C270.040 (3)0.037 (2)0.040 (2)−0.001 (2)−0.007 (2)−0.001 (2)
C280.056 (3)0.043 (3)0.069 (3)−0.008 (2)0.003 (3)−0.007 (2)
C290.042 (3)0.049 (3)0.043 (3)−0.005 (2)−0.012 (2)−0.007 (2)
C300.085 (4)0.067 (3)0.075 (3)0.004 (3)−0.044 (3)−0.016 (3)
C310.050 (3)0.042 (2)0.039 (3)−0.013 (2)−0.002 (2)−0.004 (2)
C320.068 (3)0.055 (3)0.075 (3)−0.032 (3)0.023 (3)−0.017 (3)

Geometric parameters (Å, °)

Cu1—O61.947 (3)C9—C121.389 (5)
Cu1—O11.956 (3)C10—C111.377 (5)
Cu1—O31.968 (3)C10—H100.9300
Cu1—O71.970 (3)C11—H110.9300
Cu1—N12.181 (3)C12—H120.9300
Cu1—Cu22.6077 (10)C13—C141.397 (5)
Cu2—O41.938 (3)C13—H130.9300
Cu2—O81.946 (3)C14—C171.452 (5)
Cu2—O21.981 (3)C15—C161.374 (5)
Cu2—O51.983 (3)C15—H150.9300
Cu2—N32.191 (3)C16—H160.9300
O1—C251.257 (4)C17—C181.319 (5)
O2—C251.252 (5)C17—H170.9300
O3—C271.252 (4)C18—C191.461 (5)
O4—C271.264 (4)C18—H180.9300
O5—C291.249 (4)C19—C201.382 (5)
O6—C291.260 (4)C19—C241.390 (5)
O7—C311.258 (4)C20—C211.370 (6)
O8—C311.257 (4)C20—H200.9300
N1—C111.323 (4)C21—C221.365 (7)
N1—C121.326 (4)C21—H210.9300
N2—C101.326 (4)C22—C231.375 (7)
N2—C91.341 (5)C22—H220.9300
N3—C161.325 (4)C23—C241.380 (6)
N3—C131.330 (4)C23—H230.9300
N4—C151.318 (5)C24—H240.9300
N4—C141.340 (4)C25—C261.489 (6)
C1—C21.367 (5)C26—H26A0.9600
C1—C61.370 (5)C26—H26B0.9600
C1—H10.9300C26—H26C0.9600
C2—C31.360 (6)C27—C281.497 (5)
C2—H20.9300C28—H28A0.9600
C3—C41.364 (7)C28—H28B0.9600
C3—H30.9300C28—H28C0.9600
C4—C51.384 (6)C29—C301.497 (6)
C4—H40.9300C30—H30A0.9600
C5—C61.394 (5)C30—H30B0.9600
C5—H50.9300C30—H30C0.9600
C6—C71.463 (5)C31—C321.490 (5)
C7—C81.329 (5)C32—H32A0.9600
C7—H70.9300C32—H32B0.9600
C8—C91.447 (5)C32—H32C0.9600
C8—H80.9300
O6—Cu1—O1172.31 (11)N1—C11—H11119.5
O6—Cu1—O389.91 (13)C10—C11—H11119.5
O1—Cu1—O389.18 (13)N1—C12—C9122.3 (4)
O6—Cu1—O789.49 (13)N1—C12—H12118.9
O1—Cu1—O789.51 (13)C9—C12—H12118.9
O3—Cu1—O7165.70 (10)N3—C13—C14122.3 (3)
O6—Cu1—N194.38 (11)N3—C13—H13118.9
O1—Cu1—N193.30 (12)C14—C13—H13118.9
O3—Cu1—N199.42 (11)N4—C14—C13119.9 (4)
O7—Cu1—N194.87 (11)N4—C14—C17118.8 (3)
O6—Cu1—Cu286.56 (8)C13—C14—C17121.3 (4)
O1—Cu1—Cu285.75 (8)N4—C15—C16123.2 (4)
O3—Cu1—Cu282.20 (8)N4—C15—H15118.4
O7—Cu1—Cu283.51 (8)C16—C15—H15118.4
N1—Cu1—Cu2178.12 (8)N3—C16—C15120.9 (4)
O4—Cu2—O8171.82 (10)N3—C16—H16119.6
O4—Cu2—O288.02 (13)C15—C16—H16119.6
O8—Cu2—O290.25 (13)C18—C17—C14124.1 (4)
O4—Cu2—O590.46 (13)C18—C17—H17117.9
O8—Cu2—O589.18 (12)C14—C17—H17117.9
O2—Cu2—O5165.24 (11)C17—C18—C19127.3 (4)
O4—Cu2—N396.07 (11)C17—C18—H18116.3
O8—Cu2—N392.10 (11)C19—C18—H18116.3
O2—Cu2—N399.50 (11)C20—C19—C24117.8 (4)
O5—Cu2—N395.27 (11)C20—C19—C18123.0 (4)
O4—Cu2—Cu186.66 (8)C24—C19—C18119.2 (4)
O8—Cu2—Cu185.19 (8)C21—C20—C19121.1 (5)
O2—Cu2—Cu182.81 (8)C21—C20—H20119.5
O5—Cu2—Cu182.44 (8)C19—C20—H20119.5
N3—Cu2—Cu1176.47 (9)C22—C21—C20120.6 (5)
C25—O1—Cu1122.3 (3)C22—C21—H21119.7
C25—O2—Cu2124.7 (3)C20—C21—H21119.7
C27—O3—Cu1125.2 (3)C21—C22—C23119.8 (5)
C27—O4—Cu2121.1 (3)C21—C22—H22120.1
C29—O5—Cu2124.3 (3)C23—C22—H22120.1
C29—O6—Cu1121.0 (3)C22—C23—C24119.7 (5)
C31—O7—Cu1123.8 (3)C22—C23—H23120.2
C31—O8—Cu2123.1 (3)C24—C23—H23120.2
C11—N1—C12117.3 (3)C23—C24—C19121.1 (5)
C11—N1—Cu1120.3 (3)C23—C24—H24119.5
C12—N1—Cu1122.4 (3)C19—C24—H24119.5
C10—N2—C9117.0 (3)O2—C25—O1124.2 (4)
C16—N3—C13116.9 (3)O2—C25—C26118.4 (4)
C16—N3—Cu2121.5 (3)O1—C25—C26117.4 (4)
C13—N3—Cu2121.4 (2)C25—C26—H26A109.5
C15—N4—C14116.8 (3)C25—C26—H26B109.5
C2—C1—C6121.5 (4)H26A—C26—H26B109.5
C2—C1—H1119.3C25—C26—H26C109.5
C6—C1—H1119.3H26A—C26—H26C109.5
C3—C2—C1121.0 (5)H26B—C26—H26C109.5
C3—C2—H2119.5O3—C27—O4124.7 (4)
C1—C2—H2119.5O3—C27—C28117.7 (3)
C2—C3—C4118.9 (5)O4—C27—C28117.6 (4)
C2—C3—H3120.5C27—C28—H28A109.5
C4—C3—H3120.5C27—C28—H28B109.5
C3—C4—C5120.8 (5)H28A—C28—H28B109.5
C3—C4—H4119.6C27—C28—H28C109.5
C5—C4—H4119.6H28A—C28—H28C109.5
C4—C5—C6120.2 (5)H28B—C28—H28C109.5
C4—C5—H5119.9O5—C29—O6125.6 (4)
C6—C5—H5119.9O5—C29—C30117.4 (4)
C1—C6—C5117.6 (4)O6—C29—C30117.1 (4)
C1—C6—C7123.8 (4)C29—C30—H30A109.5
C5—C6—C7118.6 (4)C29—C30—H30B109.5
C8—C7—C6127.2 (4)H30A—C30—H30B109.5
C8—C7—H7116.4C29—C30—H30C109.5
C6—C7—H7116.4H30A—C30—H30C109.5
C7—C8—C9124.4 (4)H30B—C30—H30C109.5
C7—C8—H8117.8O8—C31—O7124.3 (4)
C9—C8—H8117.8O8—C31—C32117.6 (4)
N2—C9—C12120.1 (4)O7—C31—C32118.1 (4)
N2—C9—C8118.7 (3)C31—C32—H32A109.5
C12—C9—C8121.3 (4)C31—C32—H32B109.5
N2—C10—C11122.5 (4)H32A—C32—H32B109.5
N2—C10—H10118.8C31—C32—H32C109.5
C11—C10—H10118.8H32A—C32—H32C109.5
N1—C11—C10120.9 (4)H32B—C32—H32C109.5
O6—Cu1—Cu2—O4−88.60 (13)O8—Cu2—N3—C13−6.8 (3)
O1—Cu1—Cu2—O491.53 (13)O2—Cu2—N3—C13−97.4 (3)
O3—Cu1—Cu2—O41.78 (12)O5—Cu2—N3—C1382.6 (3)
O7—Cu1—Cu2—O4−178.48 (13)C6—C1—C2—C30.3 (7)
O6—Cu1—Cu2—O892.11 (13)C1—C2—C3—C4−1.9 (8)
O1—Cu1—Cu2—O8−87.75 (13)C2—C3—C4—C52.5 (9)
O3—Cu1—Cu2—O8−177.51 (13)C3—C4—C5—C6−1.6 (8)
O7—Cu1—Cu2—O82.24 (13)C2—C1—C6—C50.7 (6)
O6—Cu1—Cu2—O2−177.02 (13)C2—C1—C6—C7−179.6 (4)
O1—Cu1—Cu2—O23.11 (12)C4—C5—C6—C10.0 (7)
O3—Cu1—Cu2—O2−86.65 (13)C4—C5—C6—C7−179.7 (4)
O7—Cu1—Cu2—O293.10 (13)C1—C6—C7—C8−11.0 (7)
O6—Cu1—Cu2—O52.31 (12)C5—C6—C7—C8168.7 (4)
O1—Cu1—Cu2—O5−177.56 (13)C6—C7—C8—C9−178.4 (3)
O3—Cu1—Cu2—O592.69 (13)C10—N2—C9—C120.9 (5)
O7—Cu1—Cu2—O5−87.57 (13)C10—N2—C9—C8−179.1 (3)
O3—Cu1—O1—C2577.7 (3)C7—C8—C9—N22.8 (6)
O7—Cu1—O1—C25−88.1 (3)C7—C8—C9—C12−177.2 (4)
N1—Cu1—O1—C25177.1 (3)C9—N2—C10—C11−0.7 (5)
Cu2—Cu1—O1—C25−4.6 (3)C12—N1—C11—C10−0.4 (5)
O4—Cu2—O2—C25−89.9 (4)Cu1—N1—C11—C10176.7 (3)
O8—Cu2—O2—C2582.1 (4)N2—C10—C11—N10.4 (6)
O5—Cu2—O2—C25−5.6 (7)C11—N1—C12—C90.6 (5)
N3—Cu2—O2—C25174.3 (3)Cu1—N1—C12—C9−176.3 (3)
Cu1—Cu2—O2—C25−3.0 (3)N2—C9—C12—N1−0.9 (6)
O6—Cu1—O3—C2786.2 (3)C8—C9—C12—N1179.0 (3)
O1—Cu1—O3—C27−86.2 (3)C16—N3—C13—C141.4 (5)
O7—Cu1—O3—C27−1.4 (7)Cu2—N3—C13—C14−173.6 (3)
N1—Cu1—O3—C27−179.4 (3)C15—N4—C14—C13−0.5 (5)
Cu2—Cu1—O3—C27−0.4 (3)C15—N4—C14—C17−179.4 (3)
O2—Cu2—O4—C2779.1 (3)N3—C13—C14—N4−0.6 (6)
O5—Cu2—O4—C27−86.2 (3)N3—C13—C14—C17178.2 (4)
N3—Cu2—O4—C27178.5 (3)C14—N4—C15—C160.8 (6)
Cu1—Cu2—O4—C27−3.8 (3)C13—N3—C16—C15−1.0 (5)
O4—Cu2—O5—C2984.6 (3)Cu2—N3—C16—C15173.9 (3)
O8—Cu2—O5—C29−87.2 (3)N4—C15—C16—N3−0.1 (6)
O2—Cu2—O5—C290.6 (7)N4—C14—C17—C18−1.4 (6)
N3—Cu2—O5—C29−179.3 (3)C13—C14—C17—C18179.8 (4)
Cu1—Cu2—O5—C29−2.0 (3)C14—C17—C18—C19179.1 (4)
O3—Cu1—O6—C29−85.7 (3)C17—C18—C19—C20−9.0 (7)
O7—Cu1—O6—C2980.0 (3)C17—C18—C19—C24172.6 (4)
N1—Cu1—O6—C29174.9 (3)C24—C19—C20—C211.1 (7)
Cu2—Cu1—O6—C29−3.5 (3)C18—C19—C20—C21−177.3 (4)
O6—Cu1—O7—C31−88.9 (3)C19—C20—C21—C220.4 (7)
O1—Cu1—O7—C3183.5 (3)C20—C21—C22—C23−1.8 (8)
O3—Cu1—O7—C31−1.3 (7)C21—C22—C23—C241.7 (9)
N1—Cu1—O7—C31176.8 (3)C22—C23—C24—C19−0.2 (8)
Cu2—Cu1—O7—C31−2.3 (3)C20—C19—C24—C23−1.2 (7)
O2—Cu2—O8—C31−85.9 (3)C18—C19—C24—C23177.3 (4)
O5—Cu2—O8—C3179.4 (3)Cu2—O2—C25—O10.5 (7)
N3—Cu2—O8—C31174.6 (3)Cu2—O2—C25—C26−179.2 (3)
Cu1—Cu2—O8—C31−3.1 (3)Cu1—O1—C25—O23.8 (6)
O6—Cu1—N1—C11172.9 (3)Cu1—O1—C25—C26−176.5 (3)
O1—Cu1—N1—C11−7.4 (3)Cu1—O3—C27—O4−2.5 (6)
O3—Cu1—N1—C1182.3 (3)Cu1—O3—C27—C28178.1 (3)
O7—Cu1—N1—C11−97.2 (3)Cu2—O4—C27—O34.8 (6)
O6—Cu1—N1—C12−10.2 (3)Cu2—O4—C27—C28−175.8 (3)
O1—Cu1—N1—C12169.5 (3)Cu2—O5—C29—O6−0.1 (6)
O3—Cu1—N1—C12−100.8 (3)Cu2—O5—C29—C30179.5 (3)
O7—Cu1—N1—C1279.7 (3)Cu1—O6—C29—O53.2 (6)
O4—Cu2—N3—C16−1.1 (3)Cu1—O6—C29—C30−176.4 (3)
O8—Cu2—N3—C16178.5 (3)Cu2—O8—C31—O72.4 (6)
O2—Cu2—N3—C1687.9 (3)Cu2—O8—C31—C32−177.3 (3)
O5—Cu2—N3—C16−92.2 (3)Cu1—O7—C31—O80.7 (6)
O4—Cu2—N3—C13173.6 (3)Cu1—O7—C31—C32−179.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2199).

References

  • Batten, S. R. (2001). CrystEngComm, 18, 1–7.
  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2940–2509.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography