Search tips
Search criteria 


Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): i73.
Published online 2010 September 18. doi:  10.1107/S1600536810036834
PMCID: PMC2983212



The structure of the title compound, vanadium indium penta­deca­molybdenum nona­deca­selenide, V1.42In1.83Mo15Se19, is isotypic with In2.9Mo15Se19 [Grüttner et al. (1979 [triangle]). Acta Cryst. B35, 285–292]. It is characterized by two cluster units Mo6Sei 8Sea 6 and Mo9Sei 11Sea 6 (where i represents inner and a apical atoms) that are present in a 1:1 ratio. The cluster units are centered at Wyckoff positions 2b and 2c and have point-group symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-00i73-efi1.jpg and An external file that holds a picture, illustration, etc.
Object name is e-66-00i73-efi2.jpg, respectively. The clusters are inter­connected through additional Mo—Se bonds. In the title compound, the V3+ cations replace the trivalent indium atoms present in In2.9Mo15Se19, and a deficiency is observed on the monovalent indium site. One Mo, one Se and the V atom are situated on mirror planes, and two other Se atoms and the In atom are situated on threefold rotation axes.

Related literature

For previous reports on the crystal structure of In~3Mo15Se19 compounds, see: Grüttner et al. (1979 [triangle]). For physical properties of this type of compound, see: Seeber et al. (1979 [triangle]). The crystal structures of the substituted compounds Ho0.76In1.68Mo15Se19 and In0.87K2Mo15Se19 were reported by Salloum et al. (2006 [triangle]; 2007 [triangle]). For details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964 [triangle]).


Crystal data

  • V1.42In1.83Mo15Se19
  • M r = 3221.80
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-66-00i73-efi3.jpg
  • a = 9.7361 (1) Å
  • c = 19.3090 (4) Å
  • V = 1585.11 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 29.21 mm−1
  • T = 293 K
  • 0.09 × 0.07 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: analytical (de Meulenaar & Tompa, 1965 [triangle]) T min = 0.161, T max = 0.329
  • 27560 measured reflections
  • 2390 independent reflections
  • 1634 reflections with I > 2σ(I)
  • R int = 0.093


  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.087
  • S = 1.08
  • 2390 reflections
  • 67 parameters
  • Δρmax = 3.22 e Å−3
  • Δρmin = −2.57 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Bergerhoff, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810036834/wm2403sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036834/wm2403Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information


From the point of view of crystal chemistry and physical properties, the reduced molybdenum selenides In~3Mo15Se19 (Grüttner et al., 1979) constitute an interesting family of compounds. Indeed, their crystal structure contains an equal mixture of Mo6 and Mo9 cluster units and the In atoms occupy two crystallographically different positions depending on their formal oxidation state of +1 or +3. Recently, we have shown that the In3+ cation can be replaced by other trivalent cations such as Ho3+ (Salloum et al., 2006) and the In+ cation by K+ (Salloum et al., 2007). Interest in these Mo cluster compounds also lies in their physical properties, because they become superconductors with high critical magnetic fields at about 4 K (Seeber et al., 1979). We present here the crystal structure of V1.42In1.83Mo15Se19 in which a 3d element replaces the trivalent indium atom.

The Mo—Se framework of the title compound consists of the cluster units Mo6Sei8Sea6 and Mo9Sei11Sea6 in a 1:1 ratio (for details of the i- and a-type ligand notation, see: Schäfer & von Schnering (1964)). Both cluster units are interconnected through additional Mo—Se bonds (Figs. 1 and 2). The first unit can be described as an Mo6 octahedron surrounded by eight face-capping inner Sei and six apical Sea ligands. The Mo9 cluster is surrounded by 11 Sei atoms capping one or two faces of the bioctahedron and six Sea ligands above the apical Mo atoms. The Mo6Sei8Sea6 and Mo9Sei11Sea6 units are centered at Wyckoff positions 2b and 2c and have point-group symmetry 3 and 6, respectively. The Mo—Mo distances within the Mo6 cluster are 2.6992 (7) Å for the distances of the Mo triangles formed by the Mo1 atoms related through the threefold axis, and 2.7223 (8) Å for the distances between these triangles. The Mo—Mo distances within the Mo9 clusters are 2.6474 (7) and 2.7056 (10) Å in the triangles formed by the atoms Mo2 and Mo3, respectively, and 2.7136 (5) and 2.7557 (5) Å for those between the Mo23 and Mo33 triangles. The Se atoms bridge either one (Se1, Se2, Se4 and Se5) or two (Se3) triangular faces of the Mo clusters. Moreover, atoms Se1 and Se2 are linked to an Mo atom of a neighboring cluster. The Mo—Se bond lengths range from 2.5467 (7) to 2.6378 (7) Å within the Mo6Sei8Sea6 unit, and from 2.5259 (8) to 2.6966 (6) Å within the Mo9Sei11Sea6 unit. Each Mo9Sei11Sea6 cluster is interconnected by six Mo6Sei8Sea6 units (and vice versa) via Mo2—Se1 bonds (and Mo1—Se2 bonds, respectively), forming the three-dimensional Mo—Se framework, the connectivity formula of which is Mo9Sei5Sei-a6/2Se-ai6/2, Mo6Sei2Sei-a6/2Sea-i6/2. It results from this arrangement that the shortest intercluster Mo1—Mo2 distance is 3.4216 (6) Å, indicating only weak metal—metal interaction. The In+ cations are surrounded by seven Se atoms forming a distorted tricapped tetrahedron, as is the case in In2.9Mo15Se19. The Se5 and Se2 atoms forming the tetrahedron are at 3.0759 (15) and 3.1221 (5) Å from the In atom, and the capping Se1 atoms are at 3.4904 (7) Å. The V3+ cations, as the In3+ cations in the In3Mo15Se19 compounds, occupy partially at 47.4 (6)% a triangular group of distorted octahedral cavities, which are formed by two Mo6Sei8Sea6 and three Mo9Sei11Sea6 units, around the threefold rotation axis. The V—Se distances are in the 2.510 (2) - 2.831 (3) Å range.


Single crystals of V1.42In1.83Mo15Se19 were prepared from a mixture of V2Se3, MoSe2, InSe and Mo with a nominal composition V1.5In2Mo15Se19. Before use, Mo powder was reduced under H2 flowing gas at 1273 K during ten hours in order to eliminate any trace of oxygen. The binaries V2Se3, MoSe2, InSe were obtained by heating stoichioetric mixtures of the elements in sealed evacuated silica tubes during about 2 days. All handlings of materials were done in an argon-filled glove box. The initial mixture (ca. 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc welding system. The charge was heated at the rate of 300 K/h up to 1773 K, the temperature which was held for 48 hours, then cooled at 100 K/h down to 1373 K and finally furnace cooled.


The highest peak and the deepest hole are located 1.56 Å and 0.66 Å from Mo3, respectively. Refinement of the occupancy factors of the V and In atoms led to the final composition V1.42 (2)In1.832 (8)Mo15Se19.


Fig. 1.
View of V1.42In1.83Mo15Se19 along [110]. Displacement ellipsoids are drawn at the 97% probability level.
Fig. 2.
Plot showing the atom-numbering scheme and the interunit linkage of the Mo9Se11Se6 and Mo6Se8Se6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.

Crystal data

V1.42In1.83Mo15Se19Dx = 6.750 Mg m3
Mr = 3221.80Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P63/mCell parameters from 26495 reflections
Hall symbol: -P 6cθ = 2.6–35.0°
a = 9.7361 (1) ŵ = 29.21 mm1
c = 19.3090 (4) ÅT = 293 K
V = 1585.11 (4) Å3Irregular block, black
Z = 20.09 × 0.07 × 0.05 mm
F(000) = 2797

Data collection

Nonius KappaCCD diffractometer2390 independent reflections
Radiation source: fine-focus sealed tube1634 reflections with I > 2σ(I)
graphiteRint = 0.093
[var phi] scans (κ = 0) + additional ω scansθmax = 35.0°, θmin = 2.6°
Absorption correction: analytical (de Meulenaar & Tompa, 1965)h = −15→15
Tmin = 0.161, Tmax = 0.329k = −15→12
27560 measured reflectionsl = −30→31


Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037w = 1/[σ2(Fo2) + (0.0413P)2 + 0.9587P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.08Δρmax = 3.22 e Å3
2390 reflectionsΔρmin = −2.57 e Å3
67 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00025 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mo10.16776 (5)0.01669 (5)0.55780 (2)0.00914 (10)
Mo20.68407 (5)0.18577 (5)0.63317 (2)0.00965 (10)
Mo30.51292 (7)0.16694 (7)0.75000.00868 (11)
Se10.03647 (6)−0.28702 (6)0.55134 (3)0.01070 (11)
Se20.37798 (6)0.00665 (6)0.64065 (3)0.01233 (12)
Se30.34594 (8)0.30753 (9)0.75000.01280 (15)
Se40.00000.00000.66221 (5)0.01643 (19)
Se50.66670.33330.52902 (5)0.01225 (17)
In10.66670.33330.36972 (6)0.0374 (4)0.916 (4)
V1−0.2026 (4)−0.1744 (3)0.75000.0177 (9)0.474 (6)

Atomic displacement parameters (Å2)

Mo10.00996 (18)0.00853 (18)0.0089 (2)0.00456 (15)0.00070 (14)−0.00012 (14)
Mo20.00995 (18)0.00993 (18)0.0089 (2)0.00488 (15)0.00013 (14)−0.00037 (14)
Mo30.0096 (2)0.0099 (3)0.0071 (3)0.0053 (2)0.0000.000
Se10.0110 (2)0.0097 (2)0.0116 (2)0.00543 (19)0.00107 (17)0.00229 (17)
Se20.0115 (2)0.0119 (2)0.0138 (3)0.00598 (18)−0.00305 (18)−0.00208 (18)
Se30.0121 (3)0.0158 (3)0.0117 (3)0.0079 (3)0.0000.000
Se40.0203 (3)0.0203 (3)0.0086 (4)0.01016 (14)0.0000.000
Se50.0142 (2)0.0142 (2)0.0083 (4)0.00712 (12)0.0000.000
In10.0345 (4)0.0345 (4)0.0431 (7)0.0172 (2)0.0000.000
V10.0216 (16)0.0095 (13)0.0165 (16)0.0038 (11)0.0000.000

Geometric parameters (Å, °)

Mo2—Se52.5259 (8)Mo3—Mo3ii2.7056 (10)
Mo2—Se22.5974 (6)Mo3—Mo3i2.7056 (10)
Mo2—Se2i2.6290 (6)Mo3—Mo2ix2.7136 (5)
Mo2—Mo2i2.6474 (7)Mo3—Mo2ii2.7136 (5)
Mo2—Mo2ii2.6474 (7)Mo3—Mo2viii2.7557 (5)
Mo2—Se1iii2.6504 (6)In1—Se53.0759 (15)
Mo2—Se3i2.6966 (6)In1—Se2x3.1221 (5)
Mo2—Mo3i2.7136 (5)In1—Se2xi3.1221 (5)
Mo2—Mo32.7557 (5)In1—Se2iv3.1221 (5)
Mo1—Se1iv2.5467 (7)In1—Se1x3.4904 (7)
Mo1—Se42.5481 (8)In1—Se1xi3.4904 (7)
Mo1—Se12.5717 (6)In1—Se1iv3.4904 (7)
Mo1—Se1v2.6111 (6)In1—Se3vii4.2444 (9)
Mo1—Se22.6378 (7)In1—Se3xii4.2444 (9)
Mo1—Mo1vi2.6992 (7)In1—Se3xiii4.2444 (9)
Mo1—Mo1v2.6992 (7)V1—Se42.510 (2)
Mo1—Mo1vii2.7223 (8)V1—Se4viii2.510 (2)
Mo1—Mo1iv2.7223 (8)V1—Se3v2.730 (3)
Mo3—Se22.5631 (6)V1—Se2vi2.7981 (18)
Mo3—Se2viii2.5631 (6)V1—Se2xiv2.7981 (18)
Mo3—Se32.5965 (9)V1—Se3vi2.831 (3)
Mo3—Se3i2.6095 (9)V1—Mo3vi2.865 (3)
Se5—Mo2—Se292.603 (17)Se2viii—Mo3—Mo3i117.84 (2)
Se5—Mo2—Se2i91.858 (17)Se3—Mo3—Mo3i118.92 (3)
Se2—Mo2—Se2i173.59 (3)Se3i—Mo3—Mo3i58.45 (3)
Se5—Mo2—Mo2i58.396 (13)Mo3ii—Mo3—Mo3i60.0
Se2—Mo2—Mo2i120.06 (2)Se2—Mo3—Mo2ix149.88 (3)
Se2i—Mo2—Mo2i58.978 (19)Se2viii—Mo3—Mo2ix59.685 (15)
Se5—Mo2—Mo2ii58.396 (13)Se3—Mo3—Mo2ix60.991 (14)
Se2—Mo2—Mo2ii60.16 (2)Se3i—Mo3—Mo2ix118.165 (16)
Se2i—Mo2—Mo2ii118.878 (19)Mo3ii—Mo3—Mo2ix61.129 (16)
Mo2i—Mo2—Mo2ii60.0Mo3i—Mo3—Mo2ix89.824 (14)
Se5—Mo2—Se1iii90.42 (2)Se2—Mo3—Mo2ii59.685 (15)
Se2—Mo2—Se1iii86.03 (2)Se2viii—Mo3—Mo2ii149.88 (3)
Se2i—Mo2—Se1iii98.54 (2)Se3—Mo3—Mo2ii60.991 (14)
Mo2i—Mo2—Se1iii137.757 (18)Se3i—Mo3—Mo2ii118.165 (16)
Mo2ii—Mo2—Se1iii129.74 (2)Mo3ii—Mo3—Mo2ii61.129 (16)
Se5—Mo2—Se3i175.68 (2)Mo3i—Mo3—Mo2ii89.824 (14)
Se2—Mo2—Se3i85.76 (2)Mo2ix—Mo3—Mo2ii112.47 (3)
Se2i—Mo2—Se3i89.46 (2)Se2—Mo3—Mo2viii145.46 (3)
Mo2i—Mo2—Se3i119.150 (18)Se2viii—Mo3—Mo2viii58.328 (15)
Mo2ii—Mo2—Se3i117.432 (18)Se3—Mo3—Mo2viii118.823 (15)
Se1iii—Mo2—Se3i93.45 (2)Se3i—Mo3—Mo2viii60.271 (14)
Se5—Mo2—Mo3i120.23 (2)Mo3ii—Mo3—Mo2viii88.941 (14)
Se2—Mo2—Mo3i116.35 (2)Mo3i—Mo3—Mo2viii59.578 (16)
Se2i—Mo2—Mo3i57.311 (17)Mo2ix—Mo3—Mo2viii57.893 (17)
Mo2i—Mo2—Mo3i61.851 (15)Mo2ii—Mo3—Mo2viii146.06 (3)
Mo2ii—Mo2—Mo3i91.063 (14)Se2—Mo3—Mo258.328 (15)
Se1iii—Mo2—Mo3i138.90 (2)Se2viii—Mo3—Mo2145.46 (3)
Se3i—Mo2—Mo3i57.36 (2)Se3—Mo3—Mo2118.823 (15)
Se5—Mo2—Mo3118.64 (2)Se3i—Mo3—Mo260.271 (14)
Se2—Mo2—Mo357.123 (17)Mo3ii—Mo3—Mo288.941 (14)
Se2i—Mo2—Mo3116.58 (2)Mo3i—Mo3—Mo259.578 (16)
Mo2i—Mo2—Mo390.142 (14)Mo2ix—Mo3—Mo2146.06 (3)
Mo2ii—Mo2—Mo360.255 (15)Mo2ii—Mo3—Mo257.893 (17)
Se1iii—Mo2—Mo3131.66 (2)Mo2viii—Mo3—Mo2109.90 (3)
Se3i—Mo2—Mo357.177 (19)Mo1vii—Se1—Mo164.26 (2)
Mo3i—Mo2—Mo359.29 (2)Mo1vii—Se1—Mo1vi63.70 (2)
Se1iv—Mo1—Se4176.34 (2)Mo1—Se1—Mo1vi62.77 (2)
Se1iv—Mo1—Se188.948 (17)Mo1vii—Se1—Mo2xv131.23 (2)
Se4—Mo1—Se191.765 (17)Mo1—Se1—Mo2xv128.19 (2)
Se1iv—Mo1—Se1v88.084 (17)Mo1vi—Se1—Mo2xv81.114 (19)
Se4—Mo1—Se1v90.859 (17)Mo3—Se2—Mo264.549 (18)
Se1—Mo1—Se1v173.79 (3)Mo3—Se2—Mo2ii63.004 (18)
Se1iv—Mo1—Se293.50 (2)Mo2—Se2—Mo2ii60.86 (2)
Se4—Mo1—Se290.13 (2)Mo3—Se2—Mo1130.39 (2)
Se1—Mo1—Se286.306 (19)Mo2—Se2—Mo1126.33 (2)
Se1v—Mo1—Se299.32 (2)Mo2ii—Se2—Mo181.018 (19)
Se1iv—Mo1—Mo1vi119.568 (17)Mo3—Se3—Mo3ii62.62 (3)
Se4—Mo1—Mo1vi58.018 (12)Mo3—Se3—Mo2ix61.649 (16)
Se1—Mo1—Mo1vi59.33 (2)Mo3ii—Se3—Mo2ix62.551 (16)
Se1v—Mo1—Mo1vi117.827 (19)Mo3—Se3—Mo2ii61.649 (16)
Se2—Mo1—Mo1vi129.11 (2)Mo3ii—Se3—Mo2ii62.551 (16)
Se1iv—Mo1—Mo1v118.595 (17)Mo2ix—Se3—Mo2ii113.56 (3)
Se4—Mo1—Mo1v58.018 (12)Mo1vi—Se4—Mo163.96 (2)
Se1—Mo1—Mo1v119.25 (2)Mo1vi—Se4—Mo1v63.96 (2)
Se1v—Mo1—Mo1v57.903 (19)Mo1—Se4—Mo1v63.96 (2)
Se2—Mo1—Mo1v137.270 (18)Mo2i—Se5—Mo263.21 (3)
Mo1vi—Mo1—Mo1v60.0Mo2i—Se5—Mo2ii63.21 (3)
Se1iv—Mo1—Mo1vii59.30 (2)Mo2—Se5—Mo2ii63.21 (3)
Se4—Mo1—Mo1vii118.273 (15)Mo2i—Se5—In1142.763 (16)
Se1—Mo1—Mo1vii57.423 (15)Mo2—Se5—In1142.763 (16)
Se1v—Mo1—Mo1vii116.42 (2)Mo2ii—Se5—In1142.763 (16)
Se2—Mo1—Mo1vii132.182 (19)Se4viii—V1—Se484.98 (9)
Mo1vi—Mo1—Mo1vii60.281 (10)Se4viii—V1—Se3v87.27 (7)
Mo1v—Mo1—Mo1vii90.0Se4—V1—Se3v87.27 (7)
Se1iv—Mo1—Mo1iv58.31 (2)Se4viii—V1—Se2vi166.76 (13)
Se4—Mo1—Mo1iv118.273 (15)Se4—V1—Se2vi87.36 (2)
Se1—Mo1—Mo1iv116.86 (2)Se3v—V1—Se2vi103.16 (8)
Se1v—Mo1—Mo1iv56.998 (14)Se4viii—V1—Se2xiv87.36 (2)
Se2—Mo1—Mo1iv140.74 (2)Se4—V1—Se2xiv166.76 (13)
Mo1vi—Mo1—Mo1iv90.0Se3v—V1—Se2xiv103.16 (8)
Mo1v—Mo1—Mo1iv60.281 (10)Se2vi—V1—Se2xiv97.98 (8)
Mo1vii—Mo1—Mo1iv59.44 (2)Se4viii—V1—Se3vi85.09 (8)
Se2—Mo3—Se2viii110.93 (3)Se4—V1—Se3vi85.09 (8)
Se2—Mo3—Se393.18 (2)Se3v—V1—Se3vi169.63 (12)
Se2viii—Mo3—Se393.18 (2)Se2vi—V1—Se3vi83.50 (6)
Se2—Mo3—Se3i88.30 (2)Se2xiv—V1—Se3vi83.50 (6)
Se2viii—Mo3—Se3i88.30 (2)Se4viii—V1—Mo3vi122.97 (8)
Se3—Mo3—Se3i177.38 (3)Se4—V1—Mo3vi122.97 (8)
Se2—Mo3—Mo3ii120.789 (19)Se3v—V1—Mo3vi136.14 (12)
Se2viii—Mo3—Mo3ii120.789 (19)Se2vi—V1—Mo3vi53.80 (4)
Se3—Mo3—Mo3ii58.92 (3)Se2xiv—V1—Mo3vi53.80 (4)
Se3i—Mo3—Mo3ii118.45 (3)Se3vi—V1—Mo3vi54.23 (5)
Se2—Mo3—Mo3i117.84 (2)

Symmetry codes: (i) −y+1, xy, z; (ii) −x+y+1, −x+1, z; (iii) −x+y+1, −x, z; (iv) xy, x, −z+1; (v) −y, xy, z; (vi) −x+y, −x, z; (vii) y, −x+y, −z+1; (viii) x, y, −z+3/2; (ix) −x+y+1, −x+1, −z+3/2; (x) −x+1, −y, −z+1; (xi) y+1, −x+y+1, −z+1; (xii) xy+1, x, −z+1; (xiii) −x+1, −y+1, −z+1; (xiv) −x+y, −x, −z+3/2; (xv) −y, xy−1, z.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2403).


  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bergerhoff, G. (1996). DIAMOND University of Bonn, Germany.
  • Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  • Grüttner, A., Yvon, K., Chevrel, R., Potel, M., Sergent, M. & Seeber, B. (1979). Acta Cryst. B35, 285–292.
  • Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Salloum, D., Gougeon, P. & Potel, M. (2006). Acta Cryst. E62, i83–i85.
  • Salloum, D., Gougeon, P. & Potel, M. (2007). Acta Cryst. E63, i8–i10.
  • Schäfer, H. & von Schnering, H. G. (1964). Angew. Chem. 76, 833-845.
  • Seeber, B., Decroux, M., Fisher, Ø., Chevrel, R., Sergent, M. & Grüttner, A. (1979). Solid State Commun 29, 419–423.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography