PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2596.
Published online 2010 September 18. doi:  10.1107/S160053681003607X
PMCID: PMC2983211

(2S)-3-Carbamoyl-2-(4-meth­oxy­benzene­sulfonamido)­propanoic acid

Abstract

In the title compound, C11H14N2O6S, an amino acid-derived sulfonamide, the acetamido group and the carb­oxy­lic group are oriented at dihedral angles of 45.84 (5)° and 47.97 (5)° respectively, with respect to the aromatic ring. In the crystal, the mol­ecules are connected by N—H(...)O and O—H(...)O hydrogen bonds and weak C—H(...)O inter­actions, forming a three-dimensional network.

Related literature

For related structures, see: Arshad et al. (2009a [triangle],b [triangle]), Khan et al. (2009 [triangle]). Amino acid-derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase, see: Dankwardt et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2596-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O6S
  • M r = 302.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2596-efi1.jpg
  • a = 7.1462 (1) Å
  • b = 8.9874 (2) Å
  • c = 11.1418 (2) Å
  • β = 108.090 (1)°
  • V = 680.22 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 100 K
  • 0.42 × 0.26 × 0.23 mm

Data collection

  • Siemens SMART diffractometer equipped with a Bruker APEXII detector
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.897, T max = 0.942
  • 15356 measured reflections
  • 3434 independent reflections
  • 3335 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.063
  • S = 1.04
  • 3434 reflections
  • 194 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1581 Friedel pairs
  • Flack parameter: −0.01 (4)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]), PLATON (Spek, 2009 [triangle]) and X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681003607X/hb5624sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003607X/hb5624Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Higher Education Commission of Pakistan for providing a fellowship to MNA under its Inter­national Research Support Initiative Programme (IRSIP).

supplementary crystallographic information

Comment

Amino acid derived sulfonamide derivatives have been used as potent inhibitors of Procollagen C-Proteinase (Dankwardt et al., 2002). This structure is in countinuation to already reported crystal structures of sulfonamides derived from amino acids (Arshad et al., 2009a), (Arshad et al., 2009b) (Khan et al., 2009) by our group.

The dihedral angle between the acetamido group attached at the C7 and the carboxylic group C7/C8/O3/O4 is 38.64 (0.05)° while these two groups are oriented at dihedral angle of 45.84 (0.05)° and 47.97 (0.05)° respectively with respect to the aromatic ring. The symmetry related intermolecular N—H···O, O—H···O and weak C—H···O type interactions stabilized the structure by the formation of three dimentional network (Fig. 2, Table, 1).

Experimental

To the solution of L-asparagine (0.5 g, 3.78 mmol) in distilled water (10 ml), 4-methoxybenzenesulfonyl chloride(0.78 g, 3.78 mmol) was suspended. The reaction mixture was allowed to stirr at room temperature for 2 hrs. The pH of the solution was maintained at 8–9 by 1M sodium carbonate solution through out the reaction. After completion of the reaction which was observed by the consumption of suspended 4-methoxybenzenesulfonyl chloride, 1 N HCl solution was used to adjusted the pH about 2–3, which results in the formation of a white precipitate, which was filtered off, dried and recrystallized in methanol by slow evaporation to yield colorless needles of (I).

Refinement

The C-H H-atoms were positioned geometricaly with C—H = 0.95 Å, C—H = 0.99Å and C—H = 1.00 Å for aromatic, methylene and chiral carbon atoms respectively, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). Similarly the C-H H-atoms were positioned geometricaly with C—H = 0.98 Å for methyl group and were refined using a riding model with Uiso(H) = 1.5 Ueq(C). The N-H and O–H H atoms were located in difference map with N–H= 0.81 (2)—0.93 (2)Å and O—H= 0.81 (2) with Uiso(H) = 1.2 for N atoms and Uiso(H) = 1.5 for O atoms. The three reflections (001), (002) and (003) were omitted during the final refinement as these were obscured by the beam stop.

Figures

Fig. 1.
The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Unit cell packing for (I) with hydrogen bonding shown as dashed lines and the hydrogen atoms not involved in hydrogen bonding have been omitted.

Crystal data

C11H14N2O6SF(000) = 316
Mr = 302.30Dx = 1.476 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 8744 reflections
a = 7.1462 (1) Åθ = 3.0–28.6°
b = 8.9874 (2) ŵ = 0.27 mm1
c = 11.1418 (2) ÅT = 100 K
β = 108.090 (1)°Needle, colorless
V = 680.22 (2) Å30.42 × 0.26 × 0.23 mm
Z = 2

Data collection

Siemens SMART diffractometer equipped with a Bruker APEXII detector3434 independent reflections
Radiation source: fine-focus sealed tube3335 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −9→9
Tmin = 0.897, Tmax = 0.942k = −11→12
15356 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063w = 1/[σ2(Fo2) + (0.0368P)2 + 0.1181P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3434 reflectionsΔρmax = 0.30 e Å3
194 parametersΔρmin = −0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 1581 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.29092 (4)−0.00600 (3)0.24767 (3)0.01463 (7)
O1−0.42282 (14)0.05232 (12)0.31015 (9)0.0222 (2)
N1−0.30244 (16)0.10725 (12)0.13389 (10)0.0151 (2)
C1−0.04937 (16)−0.00385 (17)0.35229 (10)0.0149 (2)
H1N−0.375 (3)0.193 (2)0.1302 (16)0.018*
H1N2−0.739 (3)−0.027 (2)−0.1489 (16)0.018*
O2−0.32080 (14)−0.15497 (11)0.19714 (9)0.0228 (2)
N2−0.65042 (16)0.03205 (13)−0.13841 (11)0.0173 (2)
C20.08556 (19)−0.11149 (14)0.34294 (12)0.0168 (2)
H20.0478−0.18470.27840.020*
H2N2−0.669 (2)0.130 (2)−0.1430 (17)0.020*
O3−0.03178 (13)0.32670 (11)0.13252 (9)0.0204 (2)
C30.27541 (19)−0.11253 (15)0.42761 (13)0.0181 (2)
H30.3675−0.18590.42120.022*
O40.12194 (15)0.17646 (12)0.03322 (11)0.0241 (2)
C40.32887 (17)−0.00447 (18)0.52207 (11)0.0173 (2)
H4O0.208 (3)0.238 (2)0.0560 (19)0.026*
O5−0.42990 (13)−0.15430 (10)−0.10103 (9)0.01674 (18)
C50.1919 (2)0.10294 (16)0.53159 (12)0.0196 (3)
H50.22850.17540.59680.024*
O60.51004 (13)0.00661 (13)0.60857 (8)0.0223 (2)
C60.0043 (2)0.10393 (16)0.44689 (12)0.0189 (2)
H6−0.08770.17760.45290.023*
C7−0.17978 (17)0.09007 (14)0.05256 (11)0.0132 (2)
H7−0.1132−0.00910.06980.016*
C8−0.02147 (17)0.21146 (14)0.07875 (12)0.0139 (2)
C9−0.30540 (17)0.09626 (14)−0.08778 (11)0.0138 (2)
H9A−0.36280.1968−0.10880.017*
H9B−0.22190.0752−0.14200.017*
C10−0.46823 (16)−0.01830 (16)−0.11135 (10)0.0134 (2)
C110.6510 (2)−0.10641 (19)0.60538 (14)0.0249 (3)
H11A0.5988−0.20440.61670.037*
H11B0.7742−0.08860.67340.037*
H11C0.6762−0.10320.52380.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01351 (12)0.01393 (13)0.01602 (13)−0.00161 (11)0.00396 (9)0.00279 (11)
O10.0180 (4)0.0296 (5)0.0215 (4)0.0010 (4)0.0097 (4)0.0059 (4)
N10.0158 (5)0.0138 (5)0.0171 (5)0.0037 (4)0.0074 (4)0.0040 (4)
C10.0147 (5)0.0149 (5)0.0141 (5)0.0006 (5)0.0030 (4)0.0027 (5)
O20.0230 (5)0.0141 (5)0.0264 (5)−0.0041 (4)0.0005 (4)0.0023 (4)
N20.0125 (5)0.0143 (6)0.0252 (6)−0.0011 (4)0.0061 (4)0.0012 (4)
C20.0199 (6)0.0143 (6)0.0167 (6)−0.0004 (5)0.0062 (5)−0.0001 (5)
O30.0141 (4)0.0163 (5)0.0297 (5)−0.0005 (3)0.0053 (4)−0.0082 (4)
C30.0180 (6)0.0181 (6)0.0188 (6)0.0021 (5)0.0066 (5)0.0012 (5)
O40.0170 (5)0.0220 (5)0.0373 (6)−0.0072 (4)0.0144 (4)−0.0125 (4)
C40.0161 (5)0.0203 (6)0.0149 (5)0.0006 (5)0.0040 (4)0.0033 (6)
O50.0131 (4)0.0122 (4)0.0244 (4)−0.0006 (3)0.0051 (3)−0.0009 (4)
C50.0214 (6)0.0199 (6)0.0158 (6)0.0006 (5)0.0033 (5)−0.0032 (5)
O60.0168 (4)0.0290 (5)0.0180 (4)0.0028 (4)0.0009 (3)−0.0013 (4)
C60.0211 (6)0.0171 (6)0.0179 (6)0.0029 (5)0.0054 (5)−0.0013 (5)
C70.0118 (5)0.0121 (5)0.0159 (5)0.0001 (4)0.0047 (4)−0.0003 (4)
C80.0108 (5)0.0143 (6)0.0148 (5)0.0006 (4)0.0012 (4)−0.0002 (4)
C90.0121 (5)0.0131 (5)0.0157 (5)−0.0017 (4)0.0037 (4)−0.0002 (5)
C100.0135 (5)0.0139 (6)0.0128 (5)−0.0029 (4)0.0042 (4)−0.0009 (4)
C110.0170 (6)0.0362 (8)0.0200 (6)0.0060 (5)0.0034 (5)0.0027 (6)

Geometric parameters (Å, °)

S1—O11.4336 (10)O4—H4O0.81 (2)
S1—O21.4424 (11)C4—O61.3565 (14)
S1—N11.6078 (11)C4—C51.402 (2)
S1—C11.7576 (11)O5—C101.2500 (17)
N1—C71.4514 (15)C5—C61.3790 (18)
N1—H1N0.927 (18)C5—H50.9500
C1—C21.3924 (18)O6—C111.4389 (18)
C1—C61.3948 (18)C6—H60.9500
N2—C101.3217 (16)C7—C81.5330 (17)
N2—H1N20.812 (19)C7—C91.5435 (16)
N2—H2N20.89 (2)C7—H71.0000
C2—C31.3914 (18)C9—C101.5144 (17)
C2—H20.9500C9—H9A0.9900
O3—C81.2101 (16)C9—H9B0.9900
C3—C41.3954 (19)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
O4—C81.3151 (16)C11—H11C0.9800
O1—S1—O2119.27 (6)C4—O6—C11116.86 (11)
O1—S1—N1105.72 (6)C5—C6—C1119.57 (12)
O2—S1—N1108.34 (6)C5—C6—H6120.2
O1—S1—C1109.41 (6)C1—C6—H6120.2
O2—S1—C1105.36 (6)N1—C7—C8111.01 (10)
N1—S1—C1108.38 (6)N1—C7—C9110.77 (10)
C7—N1—S1122.14 (9)C8—C7—C9109.26 (10)
C7—N1—H1N120.1 (11)N1—C7—H7108.6
S1—N1—H1N117.0 (11)C8—C7—H7108.6
C2—C1—C6120.31 (11)C9—C7—H7108.6
C2—C1—S1120.20 (10)O3—C8—O4124.77 (12)
C6—C1—S1119.46 (10)O3—C8—C7123.27 (11)
C10—N2—H1N2118.7 (12)O4—C8—C7111.95 (10)
C10—N2—H2N2118.0 (11)C10—C9—C7108.97 (10)
H1N2—N2—H2N2123.3 (16)C10—C9—H9A109.9
C3—C2—C1120.40 (12)C7—C9—H9A109.9
C3—C2—H2119.8C10—C9—H9B109.9
C1—C2—H2119.8C7—C9—H9B109.9
C2—C3—C4119.19 (12)H9A—C9—H9B108.3
C2—C3—H3120.4O5—C10—N2121.87 (12)
C4—C3—H3120.4O5—C10—C9120.94 (10)
C8—O4—H4O109.0 (14)N2—C10—C9117.14 (12)
O6—C4—C3124.36 (12)O6—C11—H11A109.5
O6—C4—C5115.50 (12)O6—C11—H11B109.5
C3—C4—C5120.14 (11)H11A—C11—H11B109.5
C6—C5—C4120.38 (12)O6—C11—H11C109.5
C6—C5—H5119.8H11A—C11—H11C109.5
C4—C5—H5119.8H11B—C11—H11C109.5
O1—S1—N1—C7176.40 (10)C3—C4—O6—C11−3.51 (19)
O2—S1—N1—C7−54.66 (11)C5—C4—O6—C11176.95 (12)
C1—S1—N1—C759.18 (11)C4—C5—C6—C10.8 (2)
O1—S1—C1—C2148.92 (10)C2—C1—C6—C5−0.26 (19)
O2—S1—C1—C219.54 (12)S1—C1—C6—C5177.93 (11)
N1—S1—C1—C2−96.25 (11)S1—N1—C7—C8−108.87 (11)
O1—S1—C1—C6−29.28 (12)S1—N1—C7—C9129.56 (10)
O2—S1—C1—C6−158.65 (10)N1—C7—C8—O3−18.96 (16)
N1—S1—C1—C685.55 (11)C9—C7—C8—O3103.49 (14)
C6—C1—C2—C3−0.15 (19)N1—C7—C8—O4162.62 (11)
S1—C1—C2—C3−178.33 (10)C9—C7—C8—O4−74.93 (13)
C1—C2—C3—C40.06 (19)N1—C7—C9—C10−54.36 (13)
C2—C3—C4—O6−179.08 (12)C8—C7—C9—C10−176.96 (10)
C2—C3—C4—C50.4 (2)C7—C9—C10—O5−65.42 (14)
O6—C4—C5—C6178.71 (12)C7—C9—C10—N2112.13 (12)
C3—C4—C5—C6−0.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.812 (19)2.147 (19)2.9430 (15)166.9 (16)
N2—H2N2···O2ii0.89 (2)2.02 (2)2.8808 (16)162.9 (17)
C11—H11B···O3iii0.982.483.3701 (17)150
N1—H1N···O5ii0.927 (18)1.907 (18)2.8196 (14)167.8 (16)
O4—H4O···O5iv0.81 (2)1.79 (2)2.5875 (14)169 (2)
C9—H9A···O2ii0.992.543.4055 (16)145

Symmetry codes: (i) −x−1, y−1/2, −z; (ii) −x−1, y+1/2, −z; (iii) −x+1, y−1/2, −z+1; (iv) −x, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5624).

References

  • Arshad, M. N., Khan, I. U., Akkurt, M. & Shafiq, M. (2009b). Acta Cryst. E65, o1953–o1954. [PMC free article] [PubMed]
  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Ahmad, S. (2009a). Acta Cryst. E65, o940. [PMC free article] [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Wart, H. E. V. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett.12, 1233–1235. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Khan, I. U., Sharif, S., Arshad, M. N., Ejaz, & Idrees, M. (2009). Acta Cryst. E65, o2436. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography