PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2539.
Published online 2010 September 11. doi:  10.1107/S160053681003583X
PMCID: PMC2983195

3,4-Dimethyl-N-[(E)-3-nitro­benzyl­idene]-1,2-oxazol-5-amine

Abstract

In the title compound, C12H11N3O3, the dihedral angle between the 3-nitro­benzaldehyde and 5-amino-3,4-dimethyl-1,2-oxazole moieties is 2.46 (12)°. The mol­ecule is close to planar, the r.m.s. deviation for the non-H atoms being 0.028 Å. The packing only features van der Waals inter­actions between the mol­ecules.

Related literature

For background and related crystal structures, see: Asiri et al. (2010a [triangle],b [triangle],c [triangle],d [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2539-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O3
  • M r = 245.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2539-efi1.jpg
  • a = 12.602 (2) Å
  • b = 3.9267 (6) Å
  • c = 23.366 (4) Å
  • β = 94.791 (9)°
  • V = 1152.3 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.22 × 0.08 × 0.06 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.992, T max = 0.995
  • 8616 measured reflections
  • 2046 independent reflections
  • 846 reflections with I > 2σ(I)
  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.161
  • S = 0.99
  • 2046 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681003583X/hb5634sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681003583X/hb5634Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for the financial support of this work via grant No. (3–045/430).

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) is being reported in continuation of our synthetic and structural studies of various Schiff bases of 5-amino-3,4-dimethylisoxazole (Asiri et al., 2010a, b, c, d).

In (I), the 3-nitrobenzaldehyde moiety A (C1—C7/N1/O1/O2) and 5-amino-3,4-dimethylisoxazole moiety B (N2/C8—C12/N3/O3) are planar with r. m. s. deviation of 0.0124 and 0.0099 Å, respectively. The dihedral angle between A/B is 2.46 (12)°. All the heavy atoms (C1—C12/N1—N3/O1—O3) consituate plane with r. m. s. deviation of 0.0276 Å. In this plane, the methyl atom C12 deviates at the maximum with 0.0721 (33) Å. The title compound essentially consists of monomers. There exists no π···π interactions in the crystal.

Experimental

A mixture of 4-nitrobenzaldehyde (0.33 g, 2.2 mmol) and 5-amino-3,4-dimethylisoxazole (0.24 g, 2.2 mmol) in ethanol (15 ml) was refluxed for 5 h with stirring to give a light yellow precipitate. This material was filtered off and washed with ethanol to give long thin needles of (I).

Yield: 56.45%; m.p. 463–464 K.

IR (KBr) \vmax cm-1: 3069 (C—H for CH3), 2922 (C—H), 1568 (C═C), 1523 (C═N), 1162 (C—N).

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C12H11N3O3F(000) = 512
Mr = 245.24Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 846 reflections
a = 12.602 (2) Åθ = 2.3–25.0°
b = 3.9267 (6) ŵ = 0.11 mm1
c = 23.366 (4) ÅT = 296 K
β = 94.791 (9)°Needle, colorless
V = 1152.3 (3) Å30.22 × 0.08 × 0.06 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer2046 independent reflections
Radiation source: fine-focus sealed tube846 reflections with I > 2σ(I)
graphiteRint = 0.097
Detector resolution: 8.20 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −4→4
Tmin = 0.992, Tmax = 0.995l = −27→27
8616 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0341P)2] where P = (Fo2 + 2Fc2)/3
2046 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0661 (2)0.9618 (9)0.11316 (16)0.0932 (16)
O20.0217 (3)0.7756 (9)0.19373 (16)0.1103 (19)
O30.5961 (2)0.7628 (6)0.02581 (12)0.0630 (11)
N10.0873 (3)0.8153 (10)0.15894 (19)0.0708 (17)
N20.5490 (3)0.5694 (8)0.11691 (13)0.0523 (12)
N30.6882 (3)0.7702 (8)−0.00509 (15)0.0660 (17)
C10.3736 (3)0.6218 (9)0.14659 (17)0.0475 (17)
C20.3985 (3)0.4605 (10)0.19866 (18)0.0579 (17)
C30.3218 (4)0.4146 (10)0.23763 (18)0.0629 (17)
C40.2194 (4)0.5255 (10)0.22380 (19)0.0618 (17)
C50.1954 (3)0.6856 (10)0.17248 (19)0.0534 (17)
C60.2697 (3)0.7379 (9)0.13294 (17)0.0511 (17)
C70.4530 (3)0.6720 (9)0.10518 (17)0.0527 (17)
C80.6232 (3)0.6142 (10)0.07766 (17)0.0521 (17)
C90.7266 (3)0.5238 (9)0.08165 (17)0.0485 (17)
C100.7629 (3)0.6275 (9)0.02938 (19)0.0513 (17)
C110.8723 (3)0.5881 (10)0.00968 (19)0.0727 (19)
C120.7889 (3)0.3614 (10)0.13104 (17)0.0672 (17)
H20.467430.381590.207780.0695*
H30.339740.309520.272770.0758*
H40.167130.491950.249080.0742*
H60.250950.847330.098260.0611*
H70.433860.778460.070290.0629*
H11A0.873210.67477−0.028690.1088*
H11B0.891530.351460.010240.1088*
H11C0.922350.712790.034860.1088*
H12A0.827730.532900.153330.1006*
H12B0.837890.200170.117120.1006*
H12C0.741370.246270.154600.1006*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.064 (2)0.141 (3)0.074 (3)0.0185 (19)0.003 (2)0.011 (2)
O20.066 (3)0.170 (4)0.100 (3)0.011 (2)0.037 (2)0.017 (2)
O30.0537 (19)0.084 (2)0.051 (2)0.0055 (14)0.0022 (15)0.0092 (15)
N10.057 (3)0.097 (3)0.059 (3)0.002 (2)0.009 (2)−0.011 (2)
N20.048 (2)0.061 (2)0.048 (2)−0.0018 (17)0.0047 (18)−0.0012 (16)
N30.065 (3)0.080 (3)0.054 (3)−0.001 (2)0.011 (2)0.0068 (19)
C10.050 (3)0.047 (3)0.045 (3)−0.0016 (19)0.001 (2)−0.005 (2)
C20.052 (3)0.068 (3)0.053 (3)−0.001 (2)0.000 (2)−0.010 (2)
C30.073 (3)0.071 (3)0.045 (3)−0.003 (2)0.006 (3)−0.003 (2)
C40.065 (3)0.073 (3)0.049 (3)−0.007 (2)0.014 (2)−0.010 (2)
C50.046 (3)0.059 (3)0.054 (3)−0.006 (2)−0.002 (2)−0.013 (2)
C60.050 (3)0.058 (3)0.045 (3)−0.0016 (19)0.003 (2)−0.005 (2)
C70.049 (3)0.065 (3)0.044 (3)−0.001 (2)0.004 (2)0.000 (2)
C80.056 (3)0.056 (3)0.043 (3)−0.001 (2)−0.003 (2)0.003 (2)
C90.042 (3)0.055 (3)0.048 (3)0.001 (2)0.001 (2)−0.003 (2)
C100.049 (3)0.053 (3)0.052 (3)0.001 (2)0.004 (2)−0.005 (2)
C110.063 (3)0.079 (3)0.079 (4)0.000 (2)0.024 (3)0.000 (3)
C120.064 (3)0.078 (3)0.059 (3)0.010 (2)0.002 (2)0.002 (2)

Geometric parameters (Å, °)

O1—N11.224 (6)C8—C91.346 (5)
O2—N11.217 (6)C9—C101.400 (6)
O3—N31.418 (5)C9—C121.484 (5)
O3—C81.362 (5)C10—C111.498 (5)
N1—C51.464 (5)C2—H20.9300
N2—C71.283 (5)C3—H30.9300
N2—C81.375 (5)C4—H40.9300
N3—C101.312 (5)C6—H60.9300
C1—C21.384 (6)C7—H70.9300
C1—C61.398 (5)C11—H11A0.9600
C1—C71.462 (5)C11—H11B0.9600
C2—C31.394 (6)C11—H11C0.9600
C3—C41.375 (7)C12—H12A0.9600
C4—C51.365 (6)C12—H12B0.9600
C5—C61.385 (6)C12—H12C0.9600
N3—O3—C8107.9 (3)N3—C10—C11119.2 (4)
O1—N1—O2122.2 (4)C9—C10—C11127.9 (4)
O1—N1—C5118.9 (4)C1—C2—H2120.00
O2—N1—C5118.9 (4)C3—C2—H2120.00
C7—N2—C8120.0 (3)C2—C3—H3120.00
O3—N3—C10104.8 (3)C4—C3—H3120.00
C2—C1—C6119.3 (4)C3—C4—H4120.00
C2—C1—C7121.7 (3)C5—C4—H4120.00
C6—C1—C7119.0 (3)C1—C6—H6121.00
C1—C2—C3121.0 (4)C5—C6—H6121.00
C2—C3—C4119.6 (4)N2—C7—H7120.00
C3—C4—C5119.2 (4)C1—C7—H7120.00
N1—C5—C4118.9 (4)C10—C11—H11A109.00
N1—C5—C6118.2 (4)C10—C11—H11B109.00
C4—C5—C6122.8 (4)C10—C11—H11C109.00
C1—C6—C5118.2 (4)H11A—C11—H11B109.00
N2—C7—C1120.1 (3)H11A—C11—H11C109.00
O3—C8—N2120.9 (3)H11B—C11—H11C109.00
O3—C8—C9110.1 (3)C9—C12—H12A109.00
N2—C8—C9128.9 (4)C9—C12—H12B109.00
C8—C9—C10104.4 (3)C9—C12—H12C109.00
C8—C9—C12127.8 (4)H12A—C12—H12B109.00
C10—C9—C12127.8 (3)H12A—C12—H12C109.00
N3—C10—C9112.9 (3)H12B—C12—H12C109.00
C8—O3—N3—C100.2 (4)C7—C1—C6—C5179.5 (3)
N3—O3—C8—C9−0.5 (4)C2—C1—C7—N2−0.9 (6)
N3—O3—C8—N2−179.4 (3)C1—C2—C3—C41.2 (6)
O2—N1—C5—C4−0.3 (6)C2—C3—C4—C5−1.4 (6)
O2—N1—C5—C6−178.9 (4)C3—C4—C5—N1−177.6 (4)
O1—N1—C5—C4179.3 (4)C3—C4—C5—C60.9 (6)
O1—N1—C5—C60.7 (6)N1—C5—C6—C1178.4 (3)
C7—N2—C8—C9−179.6 (4)C4—C5—C6—C1−0.2 (6)
C8—N2—C7—C1179.4 (3)O3—C8—C9—C100.5 (4)
C7—N2—C8—O3−0.9 (5)N2—C8—C9—C12−2.5 (7)
O3—N3—C10—C11179.1 (3)O3—C8—C9—C12178.7 (3)
O3—N3—C10—C90.1 (4)N2—C8—C9—C10179.4 (4)
C6—C1—C2—C3−0.4 (6)C8—C9—C10—N3−0.4 (4)
C7—C1—C2—C3−180.0 (4)C12—C9—C10—C112.5 (6)
C6—C1—C7—N2179.6 (3)C8—C9—C10—C11−179.3 (4)
C2—C1—C6—C5−0.1 (5)C12—C9—C10—N3−178.6 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5634).

References

  • Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2127. [PMC free article] [PubMed]
  • Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2077. [PMC free article] [PubMed]
  • Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010c). Acta Cryst. E66, o2046. [PMC free article] [PubMed]
  • Asiri, A. M., Khan, S. A., Tan, K. W. & Ng, S. W. (2010d). Acta Cryst. E66, o2019. [PMC free article] [PubMed]
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography