PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2660.
Published online 2010 September 30. doi:  10.1107/S1600536810038249
PMCID: PMC2983192

[(3R,4S)-4-(4-Fluoro­phen­yl)-1-methyl­piperidin-3-yl]methyl 4-methyl­benzene­sulfonate

Abstract

In the title compound, C20H24FNO3S, the piperidine ring adopts a chair conformation. The dihedral angle between the aromatic rings is 47.01 (17)°.

Related literature

For general background to the design and synthesis of vinyl sulfonate derivatives, see: Curzons (2003 [triangle]), Segura et al. (2003 [triangle]). For related structures, see: Wang & Kanagawa (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2660-scheme1.jpg

Experimental

Crystal data

  • C20H24FNO3S
  • M r = 377.46
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2660-efi1.jpg
  • a = 9.1590 (4) Å
  • b = 10.0764 (5) Å
  • c = 10.7644 (6) Å
  • β = 95.718 (1)°
  • V = 988.50 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.19 mm−1
  • T = 296 K
  • 0.32 × 0.26 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.931, T max = 0.963
  • 9742 measured reflections
  • 4457 independent reflections
  • 3114 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.084
  • S = 1.00
  • 4457 reflections
  • 238 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.14 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2086 Friedel pairs
  • Flack parameter: 0.05 (6)

Data collection: PROCESS-AUTO (Rigaku, 2006 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038249/kj2148sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038249/kj2148Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Mr Jian-ming Gu of the X-ray crystallography facility of Zhejiang University is acknowledged for his assistance with the crystal structure analysis.

supplementary crystallographic information

Comment

The title compound is a useful intermediate in preparing paroxetine [(3S,4R)-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl)- piperidine]. Paroxetine is a well-known selective serotonin reuptake inhibitor (SSRI) antidepressant, used world wide in therapeutics (Segura et al., 2003). In view of the above, ((3R,4S)-4-(4-fluorophenyl)-1-methylpiperidin-3-yl)methyl 4-methylbenzenesulfonate was synthesized and its crystal structure is reported here. A perspective view of the structure with the atomic numbering scheme is shown in Fig. 1. The dihedral angle between the two benzene rings is 47.01 (17)°. The piperidine ring adopts a chair conformation. The piperidine ring contains three planes (C2/C4/C5/C6, C3/C4/N1/C6, C2/C3/C5/N1), the first one of which is more planar than the other two.

Experimental

To a stirred solution of trans-(-)-paroxo (10 g) in dichloromethane (50 ml) triethylamine (7 ml) was added. The mixture was cooled to 268 K. Toluenesulfonyl chloride (12 g) was slowly added and stirred for l h at 268 K. Methanesulfonic acid (4 ml) was then added gradually and the mixture was concentrated at about 323 K at atmospheric pressure. The residue was taken up in toluene, water was added and this was stirred for 30 minutes. The top toluene layer was separated. The pH of the aqueous layer was then adjusted to 9.0 with a saturated NaHCO3 solution. The product was filtered, washed with water and dried to yield the title compound (13 g) as a white to off-white solid (m.p. 380-381 K).

Refinement

All H atoms were placed in calculated positions, with C—H distances in the range 0.93-0.98 and included in the final cycles of refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing atom labels and 40% probability displacement ellipsoids.

Crystal data

C20H24FNO3SF(000) = 400
Mr = 377.46Dx = 1.268 Mg m3
Monoclinic, P21Melting point: 380 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 9.1590 (4) ÅCell parameters from 7787 reflections
b = 10.0764 (5) Åθ = 3.0–27.4°
c = 10.7644 (6) ŵ = 0.19 mm1
β = 95.718 (1)°T = 296 K
V = 988.50 (9) Å3Chunk, yellow
Z = 20.32 × 0.26 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID diffractometer4457 independent reflections
Radiation source: rolling anode3114 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = −11→11
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.931, Tmax = 0.963l = −13→13
9742 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031w = 1/[σ2(Fo2) + (0.0395P)2 + 0.063P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.084(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.17 e Å3
4457 reflectionsΔρmin = −0.14 e Å3
238 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0052 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2086 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.05 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.34071 (5)0.65560 (6)0.19254 (4)0.05870 (14)
O10.37947 (12)0.66249 (15)0.33871 (9)0.0550 (3)
C140.51158 (17)0.6533 (2)0.13267 (13)0.0496 (4)
O20.2721 (2)0.52973 (18)0.17277 (14)0.0832 (5)
C20.4586 (2)0.77398 (17)0.53214 (15)0.0481 (4)
H20.48440.86190.56650.058*
O30.26443 (18)0.77282 (18)0.15090 (14)0.0788 (5)
N10.3547 (2)0.71908 (16)0.72847 (16)0.0659 (5)
C30.5921 (2)0.68346 (16)0.56744 (16)0.0533 (5)
H30.57030.59650.52920.064*
C70.7277 (2)0.73680 (18)0.51511 (18)0.0568 (5)
C40.6116 (2)0.6639 (3)0.70958 (16)0.0684 (5)
H4A0.68550.59630.73030.082*
H4B0.64630.74600.74920.082*
C10.4245 (2)0.79152 (17)0.39340 (16)0.0507 (4)
H1A0.34620.85580.37640.061*
H1B0.51050.82380.35710.061*
C150.5673 (2)0.7700 (2)0.08678 (18)0.0595 (5)
H150.51520.84910.08880.071*
C60.3242 (2)0.7278 (2)0.59338 (18)0.0615 (5)
H6A0.24410.78950.57290.074*
H6B0.29370.64140.56040.074*
C50.4712 (3)0.62325 (19)0.75996 (19)0.0737 (7)
H5A0.44090.53730.72600.088*
H5B0.48780.61480.85000.088*
C80.7843 (2)0.6761 (3)0.41456 (18)0.0696 (6)
H80.74240.59750.38280.083*
C190.5895 (3)0.5365 (2)0.12864 (18)0.0630 (5)
H190.55290.45830.15950.076*
C90.9024 (3)0.7304 (3)0.3602 (2)0.0862 (7)
H90.93990.68870.29310.103*
C170.7790 (2)0.6507 (4)0.03166 (18)0.0795 (6)
C180.7223 (3)0.5368 (3)0.0783 (2)0.0792 (7)
H180.77480.45800.07590.095*
C200.9241 (3)0.6477 (6)−0.0255 (3)0.1361 (12)
H20A0.91070.6047−0.10540.204*
H20B0.99530.59980.02850.204*
H20C0.95790.7369−0.03570.204*
F11.07463 (15)0.9031 (2)0.35259 (18)0.1293 (7)
C130.2204 (3)0.6809 (4)0.7843 (2)0.1021 (10)
H13A0.19100.59340.75670.153*
H13B0.14350.74280.75900.153*
H13C0.23920.68150.87370.153*
C120.7948 (2)0.8534 (2)0.5606 (2)0.0732 (6)
H120.76030.89540.62880.088*
C100.9617 (2)0.8460 (3)0.4074 (3)0.0858 (7)
C160.7006 (3)0.7662 (3)0.0384 (2)0.0751 (7)
H160.73890.84440.00920.090*
C110.9115 (3)0.9079 (3)0.5067 (3)0.0885 (7)
H110.95510.98590.53790.106*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0645 (3)0.0783 (3)0.0327 (2)−0.0102 (3)0.00190 (16)0.0008 (3)
O10.0736 (7)0.0586 (6)0.0328 (5)−0.0118 (8)0.0056 (5)0.0006 (7)
C140.0649 (9)0.0540 (9)0.0294 (7)−0.0033 (11)0.0024 (6)0.0024 (9)
O20.0960 (12)0.1015 (12)0.0521 (9)−0.0489 (10)0.0078 (8)−0.0117 (8)
C20.0602 (10)0.0463 (9)0.0372 (9)−0.0004 (8)0.0026 (7)−0.0028 (7)
O30.0729 (10)0.1132 (13)0.0492 (9)0.0227 (9)0.0005 (7)0.0127 (9)
N10.0924 (13)0.0687 (10)0.0391 (9)−0.0094 (9)0.0187 (8)−0.0068 (7)
C30.0747 (11)0.0445 (11)0.0392 (9)0.0079 (9)−0.0017 (8)−0.0071 (7)
C70.0597 (11)0.0611 (11)0.0475 (11)0.0165 (9)−0.0053 (9)−0.0066 (9)
C40.0977 (13)0.0628 (10)0.0419 (9)0.0124 (14)−0.0073 (9)0.0007 (11)
C10.0588 (10)0.0501 (10)0.0429 (10)−0.0019 (8)0.0036 (8)0.0031 (7)
C150.0787 (14)0.0583 (11)0.0409 (10)−0.0056 (10)0.0027 (9)0.0054 (9)
C60.0715 (13)0.0689 (11)0.0452 (11)−0.0076 (10)0.0106 (9)−0.0042 (8)
C50.1250 (19)0.0585 (15)0.0376 (10)−0.0056 (12)0.0081 (11)0.0020 (8)
C80.0716 (12)0.0842 (15)0.0506 (11)0.0210 (13)−0.0051 (9)−0.0139 (12)
C190.0824 (15)0.0587 (12)0.0467 (12)−0.0019 (11)0.0004 (10)−0.0012 (9)
C90.0689 (14)0.130 (2)0.0600 (15)0.0322 (14)0.0061 (11)−0.0080 (13)
C170.0626 (11)0.1280 (19)0.0472 (11)−0.0052 (18)0.0019 (8)−0.0036 (16)
C180.0810 (17)0.0940 (17)0.0603 (14)0.0232 (14)−0.0049 (12)−0.0148 (13)
C200.0691 (14)0.253 (4)0.0883 (19)−0.003 (3)0.0194 (13)−0.009 (3)
F10.0667 (8)0.1822 (18)0.1440 (16)0.0034 (10)0.0364 (9)0.0170 (13)
C130.122 (2)0.131 (3)0.0591 (14)−0.040 (2)0.0382 (13)−0.0086 (15)
C120.0656 (12)0.0774 (14)0.0771 (15)0.0049 (11)0.0098 (11)−0.0234 (11)
C100.0482 (12)0.118 (2)0.0909 (19)0.0140 (13)0.0073 (12)0.0047 (16)
C160.0785 (16)0.0988 (18)0.0482 (13)−0.0271 (14)0.0079 (11)0.0101 (12)
C110.0601 (13)0.0933 (17)0.112 (2)−0.0020 (12)0.0077 (13)−0.0169 (15)

Geometric parameters (Å, °)

S1—O31.4219 (18)C6—H6A0.9700
S1—O21.4220 (17)C6—H6B0.9700
S1—O11.5796 (10)C5—H5A0.9700
S1—C141.7510 (16)C5—H5B0.9700
O1—C11.469 (2)C8—C91.392 (3)
C14—C191.379 (3)C8—H80.9300
C14—C151.392 (3)C19—C181.380 (4)
C2—C11.505 (2)C19—H190.9300
C2—C61.527 (3)C9—C101.362 (4)
C2—C31.542 (2)C9—H90.9300
C2—H20.9800C17—C161.374 (4)
N1—C51.454 (3)C17—C181.375 (4)
N1—C61.456 (2)C17—C201.519 (3)
N1—C131.474 (3)C18—H180.9300
C3—C71.513 (3)C20—H20A0.9600
C3—C41.535 (2)C20—H20B0.9600
C3—H30.9800C20—H20C0.9600
C7—C81.387 (3)F1—C101.368 (3)
C7—C121.392 (3)C13—H13A0.9600
C4—C51.501 (3)C13—H13B0.9600
C4—H4A0.9700C13—H13C0.9600
C4—H4B0.9700C12—C111.380 (3)
C1—H1A0.9700C12—H120.9300
C1—H1B0.9700C10—C111.356 (4)
C15—C161.375 (3)C16—H160.9300
C15—H150.9300C11—H110.9300
O3—S1—O2119.85 (9)C2—C6—H6B109.3
O3—S1—O1109.40 (9)H6A—C6—H6B108.0
O2—S1—O1103.91 (9)N1—C5—C4111.70 (17)
O3—S1—C14108.92 (10)N1—C5—H5A109.3
O2—S1—C14109.32 (12)C4—C5—H5A109.3
O1—S1—C14104.29 (6)N1—C5—H5B109.3
C1—O1—S1117.67 (11)C4—C5—H5B109.3
C19—C14—C15120.08 (17)H5A—C5—H5B107.9
C19—C14—S1120.46 (16)C7—C8—C9121.4 (2)
C15—C14—S1119.45 (17)C7—C8—H8119.3
C1—C2—C6111.55 (15)C9—C8—H8119.3
C1—C2—C3113.27 (14)C14—C19—C18119.3 (2)
C6—C2—C3111.54 (15)C14—C19—H19120.4
C1—C2—H2106.7C18—C19—H19120.4
C6—C2—H2106.7C10—C9—C8118.5 (2)
C3—C2—H2106.7C10—C9—H9120.8
C5—N1—C6109.66 (15)C8—C9—H9120.8
C5—N1—C13110.76 (19)C16—C17—C18117.99 (19)
C6—N1—C13109.76 (18)C16—C17—C20121.4 (3)
C7—C3—C4113.49 (15)C18—C17—C20120.6 (4)
C7—C3—C2110.99 (14)C17—C18—C19121.7 (2)
C4—C3—C2109.40 (15)C17—C18—H18119.2
C7—C3—H3107.6C19—C18—H18119.2
C4—C3—H3107.6C17—C20—H20A109.5
C2—C3—H3107.6C17—C20—H20B109.5
C8—C7—C12117.4 (2)H20A—C20—H20B109.5
C8—C7—C3121.21 (18)C17—C20—H20C109.5
C12—C7—C3121.27 (18)H20A—C20—H20C109.5
C5—C4—C3112.10 (16)H20B—C20—H20C109.5
C5—C4—H4A109.2N1—C13—H13A109.5
C3—C4—H4A109.2N1—C13—H13B109.5
C5—C4—H4B109.2H13A—C13—H13B109.5
C3—C4—H4B109.2N1—C13—H13C109.5
H4A—C4—H4B107.9H13A—C13—H13C109.5
O1—C1—C2108.42 (13)H13B—C13—H13C109.5
O1—C1—H1A110.0C11—C12—C7121.4 (2)
C2—C1—H1A110.0C11—C12—H12119.3
O1—C1—H1B110.0C7—C12—H12119.3
C2—C1—H1B110.0C11—C10—C9122.2 (2)
H1A—C1—H1B108.4C11—C10—F1118.5 (3)
C16—C15—C14118.8 (2)C9—C10—F1119.3 (3)
C16—C15—H15120.6C17—C16—C15122.2 (2)
C14—C15—H15120.6C17—C16—H16118.9
N1—C6—C2111.50 (16)C15—C16—H16118.9
N1—C6—H6A109.3C10—C11—C12119.1 (2)
C2—C6—H6A109.3C10—C11—H11120.4
N1—C6—H6B109.3C12—C11—H11120.4
O3—S1—O1—C1−38.54 (14)C13—N1—C6—C2177.1 (2)
O2—S1—O1—C1−167.66 (14)C1—C2—C6—N1−176.31 (15)
C14—S1—O1—C177.84 (14)C3—C2—C6—N155.9 (2)
O3—S1—C14—C19−161.67 (15)C6—N1—C5—C461.7 (2)
O2—S1—C14—C19−29.00 (16)C13—N1—C5—C4−177.04 (18)
O1—S1—C14—C1981.61 (16)C3—C4—C5—N1−57.2 (2)
O3—S1—C14—C1517.09 (17)C12—C7—C8—C9−0.8 (3)
O2—S1—C14—C15149.76 (15)C3—C7—C8—C9175.15 (18)
O1—S1—C14—C15−99.62 (15)C15—C14—C19—C18−0.3 (3)
C1—C2—C3—C757.92 (18)S1—C14—C19—C18178.51 (16)
C6—C2—C3—C7−175.24 (14)C7—C8—C9—C10−0.4 (3)
C1—C2—C3—C4−176.09 (16)C16—C17—C18—C191.1 (3)
C6—C2—C3—C4−49.2 (2)C20—C17—C18—C19−178.8 (2)
C4—C3—C7—C8129.5 (2)C14—C19—C18—C17−0.2 (3)
C2—C3—C7—C8−106.83 (19)C8—C7—C12—C111.1 (3)
C4—C3—C7—C12−54.7 (2)C3—C7—C12—C11−174.8 (2)
C2—C3—C7—C1268.9 (2)C8—C9—C10—C111.3 (4)
C7—C3—C4—C5174.59 (17)C8—C9—C10—F1−177.8 (2)
C2—C3—C4—C550.0 (2)C18—C17—C16—C15−1.7 (3)
S1—O1—C1—C2−178.87 (11)C20—C17—C16—C15178.3 (2)
C6—C2—C1—O1−61.63 (18)C14—C15—C16—C171.3 (3)
C3—C2—C1—O165.21 (18)C9—C10—C11—C12−1.1 (4)
C19—C14—C15—C16−0.3 (3)F1—C10—C11—C12178.1 (2)
S1—C14—C15—C16−179.04 (15)C7—C12—C11—C10−0.2 (4)
C5—N1—C6—C2−61.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2148).

References

  • Curzons, A. D. (2003). US Patent No. 20030187269
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2006). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2007). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Segura, M., Roura, L., De La Torre, R. & Joglar, J. (2003). Bioorg. Chem.31, 248–258. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S. & Kanagawa, Y. (1997). Eur. Patent No. 0810225

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography