PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2475.
Published online 2010 September 4. doi:  10.1107/S1600536810034628
PMCID: PMC2983190

9-(1,1-Dimethyl-3-oxobut­yl)adenine

Abstract

The title compound, C11H15N5O, crystallizes with two independent mol­ecules in the asymmetric unit, both of which contain essentially planar imidazole and pyrimidine rings [maximum deviations = 0.002 (2) and 0.026 (2) Å, respectively, for the first mol­ecule, and 0.001 (2) and 0.025 (2) Å for the second]; the dihedral angles between the rings are 2.1 (2) and 1.7 (2)° in the two mol­ecules. The crystal structure is stabilized by inter­molecular N—H(...)N hydrogen bonds, defining chains along a, which are further linked by weak inter­molecular π–π contacts [centroid centroid distance = 3.7989 (16) Å] into planes parallel to (01An external file that holds a picture, illustration, etc.
Object name is e-66-o2475-efi1.jpg).

Related literature

For the synthesis of the title compound, see: Jiang & Tang (1995 [triangle]). For the biological activity of related compounds, see: Jeffery et al. (2000 [triangle]); Bayes et al. (2003 [triangle]). For related structures, see: Bo et al. (2006 [triangle]); Deng et al. (1995 [triangle]); Wei et al. (2007 [triangle]); Yu et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2475-scheme1.jpg

Experimental

Crystal data

  • C11H15N5O
  • M r = 233.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2475-efi2.jpg
  • a = 8.2565 (8) Å
  • b = 11.2229 (11) Å
  • c = 13.4021 (13) Å
  • α = 78.421 (1)°
  • β = 89.551 (2)°
  • γ = 88.483 (1)°
  • V = 1216.2 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 K
  • 0.48 × 0.47 × 0.14 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.96, T max = 0.99
  • 6288 measured reflections
  • 4208 independent reflections
  • 2538 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.162
  • S = 1.06
  • 4208 reflections
  • 313 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034628/bg2361sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034628/bg2361Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Education Department of Hainan Province (hjkj200738). We thank Daqi Wang for collecting the crystal data.

supplementary crystallographic information

Comment

Adenine and adenine derivatives have drawn great attention of biochemists and organic synthetic chemists in recent years because of its good active biologic quality. Especially in the respects of antivirus and restraint of cancer cells(Jeffery et al., 2000). They are found in a variety of biologically active molecules(Bayes et al., 2003). The title compound was a new purine alkaloid, isolated from the mycelium of Ganoderma Capense (Lloyd) Teng obtained by submerged fermentation(Yu et al., 1990). The Ganoderma Gapense (Lloyd) Teng is a famous traditional Chinese medicine, and the content of the title compound was very poor, only 8 × 10-5 from the corresponding mycelium. Herein, we report the synthesis and crystal structure of the title compound.

The title compound crystallizes with two independent but closely similar molecules per asymmetric unit(Fig 1). Both contain nearly planar imidazole and pyrimidine rings are essentially planar, with maximum deviations of 0.002 (2), 0.026 (2), 0.001 (2) and 0.025 (2) Å, respectively. The dihedral angles between imidazole and pyrimidine rings are 2.14 (20) and 1.74 (20)° respectively. The torsion angles C3—N1—C6—C10, C3—N1—C6—C11, C1—N1—C6—C10, C1—N1—C6—C11 and N1—C6—C7—C8 are 64.0 (4), -176.7 (3), -123.4 (3), -4.0 (4) and -52.1 (4)° respectively. The corresponding values of torsion angles for the second distinct conformer are 64.0 (4), -177.1 (3), -126.0 (3), -7.0 (4) and -56.0 (3)° respectively. The bond angles of C1—N1—C3(105.2 (2)°), C3—N1—C6(127.1 (2)°), C1—N1—C6(127.4 (2)°), C14—N6—C17(126.3 (2)°), C12—N6—C14(105.3 (2)°) and C12—N6—C17(127.9 (2)°) are almost 120°, suggesting the N1 and N6 are sp2 instead of traditionally sp3 hybridized with triangular plannar geometry. All bond lengths are normal(Bo et al., 2006).

In the crystal, molecules are linked by intermolecular N–H···N hydrogen-bonds (Table 1) to form an infinite one-dimensional zigzag chain running alomg a (Fig.2), in turn connected by π–π contacts involving the N3—C4, N6—C14 N8—C15 rings, defining two-dimensional layers parallel to (011).

Experimental

The title molecule was prepared according to literature procedure (Jiang et al., 1995). The compound was dissolved in a minimal amount of DMSO and the solution was then placed in a chamber saturated with dichloromethane at room temperature, covered and allowed to crystallize for two weeks. The resulting pale yellow crystals were collected by filtration, and a suitable crystal was selected for structural determination.

Refinement

All H atoms were placed in calculated positions, with N–H = 0.86 and C—H = 0.93, 0.96 or 0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the title compound without the hydrogen atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the molecular packing along a axis.

Crystal data

C11H15N5OZ = 4
Mr = 233.28F(000) = 496
Triclinic, P1Dx = 1.274 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2565 (8) ÅCell parameters from 1894 reflections
b = 11.2229 (11) Åθ = 2.7–24.3°
c = 13.4021 (13) ŵ = 0.09 mm1
α = 78.421 (1)°T = 298 K
β = 89.551 (2)°Block, colourless
γ = 88.483 (1)°0.48 × 0.47 × 0.14 mm
V = 1216.2 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4208 independent reflections
Radiation source: fine-focus sealed tube2538 reflections with I > 2σ(I)
graphiteRint = 0.030
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −9→9
Tmin = 0.96, Tmax = 0.99k = −13→12
6288 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0626P)2 + 0.3212P] where P = (Fo2 + 2Fc2)/3
4208 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.2572 (3)0.8076 (2)0.01198 (17)0.0416 (6)
N20.3297 (3)0.9315 (2)0.11520 (19)0.0483 (6)
N3−0.0300 (3)0.7899 (2)0.0569 (2)0.0498 (7)
N4−0.1029 (3)0.9008 (2)0.18776 (19)0.0480 (7)
N50.0816 (3)1.0018 (2)0.26608 (19)0.0529 (7)
H5A0.00591.01650.30670.063*
H5B0.17761.02750.27200.063*
N60.7455 (3)0.2103 (2)0.49198 (17)0.0410 (6)
N70.8180 (3)0.0572 (2)0.41366 (18)0.0437 (6)
N80.4600 (3)0.2330 (2)0.44317 (19)0.0493 (7)
N90.3889 (3)0.0939 (2)0.33544 (19)0.0471 (6)
N100.5742 (3)−0.0341 (2)0.2781 (2)0.0542 (7)
H10A0.5002−0.05470.24050.065*
H10B0.6704−0.06530.27790.065*
O10.4200 (4)0.5832 (2)0.1274 (2)0.0890 (9)
O20.9215 (3)0.3952 (2)0.34758 (19)0.0747 (7)
C10.3770 (4)0.8703 (3)0.0464 (2)0.0477 (8)
H10.48320.86950.02290.057*
C20.1666 (3)0.9074 (2)0.1277 (2)0.0378 (7)
C30.1211 (3)0.8310 (2)0.0644 (2)0.0386 (7)
C4−0.1302 (4)0.8313 (3)0.1201 (3)0.0514 (8)
H4−0.23710.80820.11690.062*
C50.0503 (3)0.9394 (3)0.1940 (2)0.0420 (7)
C60.2743 (4)0.7212 (3)−0.0589 (2)0.0478 (8)
C70.2204 (4)0.5963 (3)−0.0013 (2)0.0559 (9)
H7A0.10400.60090.00830.067*
H7B0.24140.5381−0.04470.067*
C80.2954 (5)0.5463 (3)0.1002 (3)0.0608 (9)
C90.2085 (5)0.4448 (5)0.1656 (4)0.1136 (18)
H9A0.27380.41090.22390.170*
H9B0.18820.38300.12740.170*
H9C0.10750.47510.18780.170*
C100.1629 (4)0.7668 (3)−0.1489 (2)0.0661 (10)
H10C0.05310.7699−0.12530.099*
H10D0.17130.7126−0.19590.099*
H10E0.19390.8467−0.18260.099*
C110.4479 (4)0.7178 (3)−0.0957 (3)0.0684 (10)
H11A0.47840.7983−0.12830.103*
H11B0.45750.6646−0.14340.103*
H11C0.51790.6885−0.03870.103*
C120.8644 (4)0.1328 (3)0.4701 (2)0.0452 (7)
H120.97010.13340.49340.054*
C130.6556 (3)0.0876 (2)0.3974 (2)0.0371 (7)
C140.6081 (3)0.1810 (2)0.4449 (2)0.0383 (7)
C150.3592 (4)0.1818 (3)0.3882 (2)0.0510 (8)
H150.25270.21130.38600.061*
C160.5397 (3)0.0464 (3)0.3364 (2)0.0403 (7)
C170.7629 (4)0.3162 (3)0.5422 (2)0.0485 (8)
C180.7157 (4)0.4315 (3)0.4650 (2)0.0544 (9)
H18A0.60110.42860.45060.065*
H18B0.73030.50070.49700.065*
C190.8052 (4)0.4549 (3)0.3652 (3)0.0539 (8)
C200.7440 (5)0.5588 (4)0.2860 (3)0.0932 (14)
H20A0.81960.57390.23040.140*
H20B0.73190.63010.31500.140*
H20C0.64090.53930.26160.140*
C210.6479 (5)0.3011 (3)0.6328 (3)0.0689 (10)
H21A0.53990.29080.61060.103*
H21B0.65030.37220.66240.103*
H21C0.68100.23090.68260.103*
C220.9356 (4)0.3201 (3)0.5801 (3)0.0658 (10)
H22A0.96170.24570.62710.099*
H22B0.94490.38750.61370.099*
H22C1.00910.32960.52340.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0432 (15)0.0402 (14)0.0416 (14)−0.0020 (11)−0.0024 (11)−0.0081 (12)
N20.0399 (15)0.0545 (16)0.0540 (16)−0.0090 (12)0.0030 (12)−0.0182 (14)
N30.0428 (15)0.0531 (16)0.0546 (16)−0.0070 (13)−0.0073 (13)−0.0124 (13)
N40.0373 (15)0.0555 (16)0.0543 (16)−0.0047 (12)−0.0040 (12)−0.0179 (14)
N50.0375 (14)0.0680 (18)0.0615 (18)−0.0062 (12)0.0024 (12)−0.0322 (15)
N60.0405 (14)0.0402 (14)0.0443 (15)−0.0105 (11)−0.0026 (11)−0.0117 (12)
N70.0405 (15)0.0447 (15)0.0468 (15)−0.0047 (11)−0.0044 (11)−0.0107 (12)
N80.0414 (15)0.0525 (16)0.0564 (17)−0.0053 (12)0.0008 (12)−0.0162 (13)
N90.0362 (14)0.0584 (17)0.0485 (15)−0.0103 (12)0.0028 (11)−0.0141 (13)
N100.0401 (15)0.0626 (17)0.0674 (18)−0.0084 (13)−0.0063 (13)−0.0296 (15)
O10.105 (2)0.0779 (19)0.0757 (19)−0.0019 (17)−0.0336 (17)0.0054 (15)
O20.0770 (18)0.0712 (17)0.0722 (17)−0.0083 (15)0.0210 (14)−0.0060 (14)
C10.0407 (18)0.0519 (19)0.0516 (19)−0.0047 (15)0.0015 (15)−0.0127 (16)
C20.0346 (16)0.0395 (16)0.0397 (16)−0.0041 (13)−0.0008 (13)−0.0086 (14)
C30.0356 (17)0.0368 (16)0.0401 (17)−0.0022 (13)−0.0043 (13)0.0003 (13)
C40.0369 (18)0.057 (2)0.061 (2)−0.0090 (15)−0.0038 (16)−0.0118 (18)
C50.0388 (17)0.0430 (17)0.0443 (18)−0.0021 (13)−0.0043 (14)−0.0090 (15)
C60.066 (2)0.0417 (18)0.0365 (17)0.0014 (15)−0.0023 (15)−0.0108 (14)
C70.072 (2)0.0430 (18)0.055 (2)−0.0013 (16)−0.0081 (17)−0.0142 (16)
C80.071 (2)0.050 (2)0.057 (2)0.0128 (19)0.001 (2)−0.0020 (18)
C90.082 (3)0.136 (4)0.094 (3)0.003 (3)0.021 (3)0.046 (3)
C100.090 (3)0.064 (2)0.044 (2)0.001 (2)−0.0139 (18)−0.0098 (17)
C110.076 (3)0.072 (2)0.061 (2)0.007 (2)0.0088 (19)−0.025 (2)
C120.0390 (17)0.0495 (18)0.0470 (18)−0.0084 (14)−0.0061 (14)−0.0085 (15)
C130.0333 (16)0.0371 (16)0.0392 (16)−0.0083 (12)0.0007 (12)−0.0023 (13)
C140.0366 (17)0.0387 (16)0.0385 (16)−0.0105 (13)0.0033 (13)−0.0043 (13)
C150.0388 (18)0.061 (2)0.053 (2)−0.0028 (15)0.0017 (15)−0.0096 (17)
C160.0384 (17)0.0437 (17)0.0392 (17)−0.0127 (14)0.0050 (13)−0.0078 (14)
C170.055 (2)0.0488 (19)0.0442 (18)−0.0177 (15)0.0027 (15)−0.0142 (15)
C180.060 (2)0.0439 (19)0.063 (2)−0.0120 (16)0.0047 (17)−0.0175 (17)
C190.054 (2)0.051 (2)0.056 (2)−0.0205 (17)−0.0019 (17)−0.0063 (17)
C200.086 (3)0.108 (3)0.073 (3)−0.002 (3)−0.013 (2)0.012 (3)
C210.083 (3)0.074 (2)0.055 (2)−0.020 (2)0.0121 (19)−0.0231 (19)
C220.071 (2)0.065 (2)0.066 (2)−0.0249 (19)−0.0131 (19)−0.0202 (19)

Geometric parameters (Å, °)

N1—C11.364 (3)C7—C81.495 (5)
N1—C31.368 (3)C7—H7A0.9700
N1—C61.491 (3)C7—H7B0.9700
N2—C11.307 (4)C8—C91.488 (5)
N2—C21.383 (3)C9—H9A0.9600
N3—C41.320 (4)C9—H9B0.9600
N3—C31.353 (3)C9—H9C0.9600
N4—C41.334 (4)C10—H10C0.9600
N4—C51.356 (3)C10—H10D0.9600
N5—C51.333 (3)C10—H10E0.9600
N5—H5A0.8600C11—H11A0.9600
N5—H5B0.8600C11—H11B0.9600
N6—C121.364 (4)C11—H11C0.9600
N6—C141.382 (3)C12—H120.9300
N6—C171.489 (3)C13—C141.378 (4)
N7—C121.311 (3)C13—C161.409 (4)
N7—C131.383 (3)C15—H150.9300
N8—C151.331 (4)C17—C211.520 (4)
N8—C141.339 (3)C17—C221.522 (4)
N9—C151.340 (4)C17—C181.530 (4)
N9—C161.341 (3)C18—C191.502 (5)
N10—C161.332 (3)C18—H18A0.9700
N10—H10A0.8600C18—H18B0.9700
N10—H10B0.8600C19—C201.491 (5)
O1—C81.205 (4)C20—H20A0.9600
O2—C191.205 (4)C20—H20B0.9600
C1—H10.9300C20—H20C0.9600
C2—C31.381 (4)C21—H21A0.9600
C2—C51.392 (4)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C6—C111.514 (5)C22—H22A0.9600
C6—C101.519 (4)C22—H22B0.9600
C6—C71.534 (4)C22—H22C0.9600
C1—N1—C3105.2 (2)C6—C10—H10E109.5
C1—N1—C6127.4 (2)H10C—C10—H10E109.5
C3—N1—C6127.1 (2)H10D—C10—H10E109.5
C1—N2—C2104.0 (2)C6—C11—H11A109.5
C4—N3—C3110.7 (2)C6—C11—H11B109.5
C4—N4—C5117.3 (3)H11A—C11—H11B109.5
C5—N5—H5A120.0C6—C11—H11C109.5
C5—N5—H5B120.0H11A—C11—H11C109.5
H5A—N5—H5B120.0H11B—C11—H11C109.5
C12—N6—C14105.3 (2)N7—C12—N6114.8 (2)
C12—N6—C17127.9 (2)N7—C12—H12122.6
C14—N6—C17126.3 (2)N6—C12—H12122.6
C12—N7—C13103.0 (2)C14—C13—N7111.5 (2)
C15—N8—C14110.7 (2)C14—C13—C16117.1 (3)
C15—N9—C16118.3 (2)N7—C13—C16131.2 (3)
C16—N10—H10A120.0N8—C14—C13126.6 (3)
C16—N10—H10B120.0N8—C14—N6127.9 (2)
H10A—N10—H10B120.0C13—C14—N6105.5 (2)
N2—C1—N1114.3 (3)N8—C15—N9129.4 (3)
N2—C1—H1122.9N8—C15—H15115.3
N1—C1—H1122.9N9—C15—H15115.3
C3—C2—N2110.0 (2)N10—C16—N9119.0 (2)
C3—C2—C5117.7 (3)N10—C16—C13123.3 (3)
N2—C2—C5132.2 (2)N9—C16—C13117.7 (2)
N3—C3—N1127.9 (3)N6—C17—C21108.4 (2)
N3—C3—C2125.6 (3)N6—C17—C22110.1 (3)
N1—C3—C2106.5 (2)C21—C17—C22108.8 (3)
N3—C4—N4130.4 (3)N6—C17—C18108.0 (2)
N3—C4—H4114.8C21—C17—C18109.6 (3)
N4—C4—H4114.8C22—C17—C18111.8 (3)
N5—C5—N4117.8 (3)C19—C18—C17117.3 (3)
N5—C5—C2123.9 (3)C19—C18—H18A108.0
N4—C5—C2118.2 (2)C17—C18—H18A108.0
N1—C6—C11109.7 (2)C19—C18—H18B108.0
N1—C6—C10107.7 (2)C17—C18—H18B108.0
C11—C6—C10109.7 (3)H18A—C18—H18B107.2
N1—C6—C7107.6 (2)O2—C19—C20119.9 (3)
C11—C6—C7112.1 (3)O2—C19—C18123.5 (3)
C10—C6—C7109.9 (3)C20—C19—C18116.6 (3)
C8—C7—C6117.9 (3)C19—C20—H20A109.5
C8—C7—H7A107.8C19—C20—H20B109.5
C6—C7—H7A107.8H20A—C20—H20B109.5
C8—C7—H7B107.8C19—C20—H20C109.5
C6—C7—H7B107.8H20A—C20—H20C109.5
H7A—C7—H7B107.2H20B—C20—H20C109.5
O1—C8—C9121.4 (4)C17—C21—H21A109.5
O1—C8—C7122.9 (3)C17—C21—H21B109.5
C9—C8—C7115.7 (4)H21A—C21—H21B109.5
C8—C9—H9A109.5C17—C21—H21C109.5
C8—C9—H9B109.5H21A—C21—H21C109.5
H9A—C9—H9B109.5H21B—C21—H21C109.5
C8—C9—H9C109.5C17—C22—H22A109.5
H9A—C9—H9C109.5C17—C22—H22B109.5
H9B—C9—H9C109.5H22A—C22—H22B109.5
C6—C10—H10C109.5C17—C22—H22C109.5
C6—C10—H10D109.5H22A—C22—H22C109.5
H10C—C10—H10D109.5H22B—C22—H22C109.5
C2—N2—C1—N10.2 (3)C13—N7—C12—N6−0.1 (3)
C3—N1—C1—N2−0.3 (3)C14—N6—C12—N70.3 (3)
C6—N1—C1—N2−174.2 (3)C17—N6—C12—N7−171.4 (3)
C1—N2—C2—C30.0 (3)C12—N7—C13—C14−0.1 (3)
C1—N2—C2—C5175.5 (3)C12—N7—C13—C16174.6 (3)
C4—N3—C3—N1179.6 (3)C15—N8—C14—C130.1 (4)
C4—N3—C3—C2−1.0 (4)C15—N8—C14—N6178.7 (3)
C1—N1—C3—N3179.7 (3)N7—C13—C14—N8179.1 (3)
C6—N1—C3—N3−6.4 (5)C16—C13—C14—N83.6 (4)
C1—N1—C3—C20.2 (3)N7—C13—C14—N60.2 (3)
C6—N1—C3—C2174.2 (2)C16—C13—C14—N6−175.2 (2)
N2—C2—C3—N3−179.6 (3)C12—N6—C14—N8−179.1 (3)
C5—C2—C3—N34.2 (4)C17—N6—C14—N8−7.2 (5)
N2—C2—C3—N1−0.1 (3)C12—N6—C14—C13−0.3 (3)
C5—C2—C3—N1−176.4 (2)C17—N6—C14—C13171.6 (3)
C3—N3—C4—N4−1.9 (5)C14—N8—C15—N9−2.5 (5)
C5—N4—C4—N31.4 (5)C16—N9—C15—N80.8 (5)
C4—N4—C5—N5−175.5 (3)C15—N9—C16—N10−174.7 (3)
C4—N4—C5—C22.1 (4)C15—N9—C16—C133.2 (4)
C3—C2—C5—N5172.9 (3)C14—C13—C16—N10172.7 (3)
N2—C2—C5—N5−2.3 (5)N7—C13—C16—N10−1.7 (5)
C3—C2—C5—N4−4.5 (4)C14—C13—C16—N9−5.2 (4)
N2—C2—C5—N4−179.8 (3)N7—C13—C16—N9−179.6 (3)
C1—N1—C6—C11−4.0 (4)C12—N6—C17—C21−126.0 (3)
C3—N1—C6—C11−176.7 (3)C14—N6—C17—C2164.0 (4)
C1—N1—C6—C10−123.4 (3)C12—N6—C17—C22−7.0 (4)
C3—N1—C6—C1064.0 (4)C14—N6—C17—C22−177.1 (3)
C1—N1—C6—C7118.2 (3)C12—N6—C17—C18115.3 (3)
C3—N1—C6—C7−54.5 (4)C14—N6—C17—C18−54.7 (4)
N1—C6—C7—C8−52.1 (4)N6—C17—C18—C19−56.0 (3)
C11—C6—C7—C868.6 (4)C21—C17—C18—C19−173.9 (3)
C10—C6—C7—C8−169.1 (3)C22—C17—C18—C1965.3 (3)
C6—C7—C8—O1−18.3 (5)C17—C18—C19—O2−8.0 (5)
C6—C7—C8—C9163.2 (3)C17—C18—C19—C20172.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N10—H10B···N4i0.862.283.051 (3)149
N10—H10A···N2ii0.862.233.072 (3)166
N5—H5B···N9iii0.862.162.988 (3)161
N5—H5A···N7iv0.862.203.064 (3)178

Symmetry codes: (i) x+1, y−1, z; (ii) x, y−1, z; (iii) x, y+1, z; (iv) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2361).

References

  • Bayes, M., Rabasseda, X. & Prous, J. R. (2003). Methods Find. Exp. Clin. Pharmacol.25, 53–76. [PubMed]
  • Bo, Y., Cheng, K., Bi, S. & Zhang, S.-S. (2006). Acta Cryst. E62, o4174–o4175.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin,USA.
  • Deng, H. F., Jiang, Y. Z. & Zhao, Z. Z. (1995). Acta Pharm. Sin.30, 347–356.
  • Jeffery, L., Kim, J. H. & Wiemer, D. F. (2000). Tetrahedron, 56, 5077–5083.
  • Jiang, Y. Z. & Tang, X. Z. (1995). Chin. Chem. Lett.6, 661–662.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, H. C., Zhang, R., Wang, C. F., Zheng, H. Q., Li, A. X., Chou, K. C. & Wei, D. Q. (2007). J. Theor. Biol.244, 692–702. [PubMed]
  • Yu, J. G., Chen, R. Y., Yao, Z. X., Zhai, Y. F., Yang, S. L. & Ma, J. L. (1990). Acta Pharm. Sin.25, 612–616. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography