PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2657.
Published online 2010 September 30. doi:  10.1107/S1600536810038018
PMCID: PMC2983189

N′-(Butan-2-yl­idene)furan-2-carbohydrazide

Abstract

The title Schiff base compound, C9H12N2O2, was obtained from a condensation reaction of butan-2-one and furan-2-carbohydrazide. The furan ring and the hydrazide fragment are roughly planar, the largest deviation from the mean plane being 0.069 (2)Å, but the butanyl­idene group is twisted slightly with respect to this plane by a dihedral angle of 5.2 (3)°. In the crystal, inter­molecular N—H(...)O hydrogen bonds link pairs of inversion-related mol­ecules, forming dimers of R 2 2(8) graph-set motif.

Related literature

For general properties of Schiff bases, see: Kahwa et al. (1986 [triangle]); Santos et al. (2001 [triangle]). For related structures containing the furan-2-carbohydrazide fragment, see: Jing et al. (2007a [triangle],b [triangle]); Yao & Jing (2007 [triangle]); Bakir & Gyles (2003 [triangle]); Tai et al. (2007a [triangle],b [triangle]); Zhou et al. (2007 [triangle]); Butcher et al. (2007 [triangle]); Zhao et al. (2007 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2657-scheme1.jpg

Experimental

Crystal data

  • C9H12N2O2
  • M r = 180.21
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2657-efi1.jpg
  • a = 8.2664 (15) Å
  • b = 16.6687 (13) Å
  • c = 7.5396 (11) Å
  • β = 113.171 (19)°
  • V = 955.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.21 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.978, T max = 0.982
  • 4182 measured reflections
  • 1955 independent reflections
  • 761 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.101
  • S = 0.74
  • 1955 reflections
  • 120 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038018/dn2605sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038018/dn2605Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). In this paper, we synthesized the title compound and reported its crystal structure of the title compound.

The molecular structure of (I) adopts an E conformation with respect to the C=N double bond (Fig.1). The furan ring and the the C5/N1/N2/C6 group are roughly planar with the largest deviation from the mean plane being 0.069 (2)Å but the butan C6/C7/C8/C9 group is slightly twisted with respect to this plane by a dihedral angle of 5.2 (3)°. Distances and bond angles within the furan and the hydrazide moiety agree with related structures found in the literature (Jing et al., 2007a,b; Yao & Jing, 2007; Bakir & Gyles, 2003; Tai et al., 2007a,b; Zhou et al., 2007; Butcher et al., 2007; Zhao et al., 2007.

Intermolecular N—H···O hydrogen bonds link the molecules two by two around inversion centers to form dimers with a R22(8) graph set motif (Etter et al., 1990; Bernstein et al., 1995) (Table 1, Fig. 2).

Experimental

Furan-2-carbohydrazine (1 mmol, 0.126 g) was dissolved in anhydrous ethanol (10 ml), The mixture was stirred for several minitutes at 351k, butan-2-one(1 mmol, 0.072 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from methanol/dicholomethane(1:1), colorless single crystals of (I) was obtained after 3 d.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.93Å (aromatic) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.
Molecular view of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii.
Fig. 2.
Partial packing view showing the formation of dimer through N-H···O hydogen bonds shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

C9H12N2O2F(000) = 384
Mr = 180.21Dx = 1.253 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1520 reflections
a = 8.2664 (15) Åθ = 3.1–28.8°
b = 16.6687 (13) ŵ = 0.09 mm1
c = 7.5396 (11) ÅT = 293 K
β = 113.171 (19)°Block, colorless
V = 955.1 (2) Å30.21 × 0.19 × 0.17 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1955 independent reflections
Radiation source: fine-focus sealed tube761 reflections with I > 2σ(I)
graphiteRint = 0.040
ω scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −11→9
Tmin = 0.978, Tmax = 0.982k = −18→21
4182 measured reflectionsl = −6→9

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.74w = 1/[σ2(Fo2) + (0.0434P)2] where P = (Fo2 + 2Fc2)/3
1955 reflections(Δ/σ)max = 0.003
120 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4993 (2)0.32297 (8)0.4042 (2)0.0598 (5)
O20.4694 (2)0.41298 (8)0.1056 (2)0.0670 (6)
N10.6592 (3)0.50672 (9)0.2784 (3)0.0511 (6)
H10.64970.53140.17460.061*
N20.7678 (3)0.53804 (11)0.4554 (3)0.0505 (6)
C10.5264 (4)0.29006 (14)0.5768 (4)0.0586 (8)
H1B0.48000.24110.59320.070*
C20.6274 (4)0.33618 (14)0.7195 (4)0.0638 (8)
H2B0.66410.32620.85090.077*
C30.6686 (3)0.40406 (13)0.6316 (4)0.0582 (7)
H3A0.73830.44730.69560.070*
C40.5899 (3)0.39476 (11)0.4416 (3)0.0437 (6)
C50.5674 (3)0.43790 (12)0.2653 (3)0.0473 (7)
C60.8540 (3)0.60130 (13)0.4535 (3)0.0502 (7)
C70.9668 (4)0.63698 (13)0.6436 (4)0.0669 (8)
H7A0.93020.69210.64570.080*
H7B1.08720.63810.65290.080*
C80.9648 (4)0.59519 (17)0.8197 (4)0.0933 (10)
H8A1.03430.62510.93290.140*
H8B1.01280.54220.82780.140*
H8C0.84590.59160.81080.140*
C90.8539 (4)0.64420 (13)0.2796 (4)0.0806 (10)
H9A0.84470.60590.18100.121*
H9B0.96130.67400.31340.121*
H9C0.75570.68030.23250.121*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0962 (15)0.0377 (8)0.0454 (11)−0.0067 (9)0.0276 (10)0.0008 (7)
O20.1069 (16)0.0467 (9)0.0373 (11)−0.0157 (9)0.0174 (11)−0.0023 (8)
N10.0748 (15)0.0400 (10)0.0386 (12)−0.0059 (11)0.0224 (11)0.0015 (9)
N20.0599 (15)0.0458 (11)0.0440 (13)−0.0015 (10)0.0186 (11)−0.0015 (9)
C10.085 (2)0.0456 (13)0.0495 (18)−0.0007 (14)0.0312 (16)0.0107 (12)
C20.077 (2)0.0659 (16)0.0435 (17)−0.0090 (15)0.0182 (16)0.0110 (13)
C30.067 (2)0.0543 (14)0.0472 (17)−0.0152 (13)0.0155 (15)0.0028 (12)
C40.0572 (18)0.0318 (12)0.0431 (15)0.0011 (11)0.0208 (13)0.0017 (10)
C50.0661 (19)0.0369 (13)0.0406 (16)0.0038 (13)0.0228 (15)−0.0010 (11)
C60.0518 (18)0.0415 (13)0.0561 (17)0.0021 (13)0.0199 (14)0.0008 (11)
C70.060 (2)0.0655 (16)0.069 (2)−0.0095 (14)0.0184 (17)−0.0050 (14)
C80.092 (3)0.123 (2)0.059 (2)−0.0321 (19)0.0227 (18)−0.0138 (18)
C90.101 (3)0.0641 (17)0.075 (2)−0.0200 (16)0.0328 (19)0.0117 (14)

Geometric parameters (Å, °)

O1—C11.347 (2)C4—C51.457 (3)
O1—C41.381 (2)C6—C71.492 (3)
O2—C51.229 (2)C6—C91.493 (3)
N1—C51.357 (3)C7—C81.505 (3)
N1—N21.384 (2)C7—H7A0.9700
N1—H10.8600C7—H7B0.9700
N2—C61.276 (3)C8—H8A0.9600
C1—C21.319 (3)C8—H8B0.9600
C1—H1B0.9300C8—H8C0.9600
C2—C31.419 (3)C9—H9A0.9600
C2—H2B0.9300C9—H9B0.9600
C3—C41.329 (3)C9—H9C0.9600
C3—H3A0.9300
C1—O1—C4106.56 (17)N2—C6—C9126.8 (2)
C5—N1—N2121.40 (19)C7—C6—C9115.9 (2)
C5—N1—H1119.3C6—C7—C8116.3 (2)
N2—N1—H1119.3C6—C7—H7A108.2
C6—N2—N1117.00 (19)C8—C7—H7A108.2
C2—C1—O1111.2 (2)C6—C7—H7B108.2
C2—C1—H1B124.4C8—C7—H7B108.2
O1—C1—H1B124.4H7A—C7—H7B107.4
C1—C2—C3106.0 (2)C7—C8—H8A109.5
C1—C2—H2B127.0C7—C8—H8B109.5
C3—C2—H2B127.0H8A—C8—H8B109.5
C4—C3—C2107.7 (2)C7—C8—H8C109.5
C4—C3—H3A126.1H8A—C8—H8C109.5
C2—C3—H3A126.1H8B—C8—H8C109.5
C3—C4—O1108.49 (19)C6—C9—H9A109.5
C3—C4—C5139.3 (2)C6—C9—H9B109.5
O1—C4—C5112.16 (19)H9A—C9—H9B109.5
O2—C5—N1119.4 (2)C6—C9—H9C109.5
O2—C5—C4121.6 (2)H9A—C9—H9C109.5
N1—C5—C4118.9 (2)H9B—C9—H9C109.5
N2—C6—C7117.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.162.981 (2)160

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2605).

References

  • Bakir, M. & Gyles, C. (2003). J. Mol. Struct.649, 133–135.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Jasinski, J. P., Kushawaha, S. K., Bharty, M. K. & Singh, N. K. (2007). Acta Cryst. E63, o4590–o4591.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Jing, Z.-L., Yu, M. & Chen, X. (2007a). Acta Cryst. E63, o3899.
  • Jing, Z.-L., Yu, M. & Chen, X. (2007b). Acta Cryst. E63, o3992.
  • Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  • Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tai, X.-S., Hao, M.-Y. & Feng, Y.-M. (2007a). Acta Cryst. E63, o2267–o2268.
  • Tai, X.-S., Yin, J., Hao, M.-Y. & Liang, Z.-P. (2007b). Acta Cryst. E63, o2144–o2145.
  • Yao, X.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o3900.
  • Zhao, Y.-L., Zhang, Q.-Z., Chen, X. & Yu, M. (2007). Acta Cryst. E63, o2952–o2953.
  • Zhou, Q.-L., Wang, C.-L. & Jing, Z.-L. (2007). Acta Cryst. E63, o898–o899.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography