PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1301.
Published online 2010 September 25. doi:  10.1107/S1600536810036913
PMCID: PMC2983187

catena-Poly[[[dipyridine­copper(II)]-μ-2,3,5,6-tetra­methyl­benzene-1,4-di­carboxyl­ato] monohydrate]

Abstract

In the title complex, {[Cu(C12H12O4)(C5H5N)2]·H2O}n, the CuII ion lies on an inversion center and is coordinated by two O atoms from two 2,3,5,6-tetra­methyl­benzene-1,4-dicarboxyl­ate (TBDC) ligands and two N atoms from two pyridine ligands in a slightly distorted square-planar environment. The TBDC ligands act as bridging ligands, forming chains along [110]. These chains are further linked into a two-dimensional network via inter­molecular O—H(...)O hydrogen bonds. The solvent water mol­ecule lies on a twofold rotation axis.

Related literature

For related structures, see: Chun et al. (2005 [triangle]); Diniz et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1301-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H12O4)(C5H5N)2]·H2O
  • M r = 459.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1301-efi1.jpg
  • a = 13.3280 (8) Å
  • b = 17.1434 (11) Å
  • c = 10.7390 (7) Å
  • β = 108.481 (1)°
  • V = 2327.2 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 298 K
  • 0.15 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.868, T max = 0.926
  • 6747 measured reflections
  • 2594 independent reflections
  • 2283 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.086
  • S = 1.06
  • 2594 reflections
  • 142 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT-Plus (Bruker, 2007 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036913/lh5099sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036913/lh5099Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful for funding support from the Natural Science Foundation of Shanxi Province (2007011033).

supplementary crystallographic information

Comment

The title compound (I), was designed as a ligand for preparing MOF materials and its single-crystal is presented herein. Some crystal structures containing TBDC and 1,2,4,5-benzenetetracarboxylate as ligands have already appeared in the literature (Chun et al., 2005; Diniz et al., 2002). The asymmetric unit (labeled in Fig. 1) contains one half copper ion, one pyridine ligand, one half solvent water molecule and half of a TBDC ligand (Fig 1.). The CuII ion lies on an inversion center and is coordinated by two oxygen atoms from two TBDC ligands and two nitrogen atoms from two pyridine ligands in a slightly distorted square-planar environment. The TBDC ligands act as bridiging to form one-dimensional chains along [110] (Fig 2.). These chains are further linked into a two-dimensional network via intermolecular O-H···O hydrogen bonds (Fig. 3).

Experimental

A mixture of Cu(NO3)2(20 mg, 0.08 mmol),H2TBDC (10 mg,0.05 mmol) and two drops of pyridine was suspended in 15 ml water and heated in a teflon-lined steel bomb at 100 centigrade degree for 3 days. The block blue crystals of the title compound were obtained, washed with water and dried in the air.

Refinement

H atoms bonded to C atoms were placed in calculated positions with C-H = 0.93-0.96Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. The unique H atom of the water molecule was refined indpendently with an isotropic displacement parameter. Since our goal was to prepare a porous material the solvent accessible voids of 138.00Å3 present in the structure might be expected.

Figures

Fig. 1.
View of the coordination around the CuII ion in the title compound. Probabilty ellipsoids are drawn at the 50% level. Only the atoms of the asymmetric unit are labeled.
Fig. 2.
Part of the one-dimensional chain of the title compound.
Fig. 3.
Part of the crystal structure of the title compound with hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are showm.

Crystal data

[Cu(C12H12O4)(C5H5N)2]·H2OF(000) = 956
Mr = 459.98Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3713 reflections
a = 13.3280 (8) Åθ = 2.4–27.5°
b = 17.1434 (11) ŵ = 0.97 mm1
c = 10.7390 (7) ÅT = 298 K
β = 108.481 (1)°Block, blue
V = 2327.2 (3) Å30.15 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2594 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADBAS; Sheldrick, 1996)h = −17→10
Tmin = 0.868, Tmax = 0.926k = −19→21
6747 measured reflectionsl = −10→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0467P)2 + 1.775P] where P = (Fo2 + 2Fc2)/3
2594 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.00000.00000.02763 (11)
O20.07772 (9)0.07930 (7)−0.06903 (12)0.0326 (3)
N1−0.12716 (11)0.06855 (8)−0.04454 (14)0.0313 (3)
O10.10913 (11)0.10867 (8)0.14011 (13)0.0418 (3)
C10.12054 (13)0.12134 (9)0.03160 (17)0.0294 (3)
C20.18792 (13)0.18884 (9)0.01433 (16)0.0289 (3)
C30.13967 (13)0.25988 (10)−0.03235 (17)0.0312 (4)
C50.29738 (13)0.17762 (10)0.04732 (17)0.0315 (4)
C11−0.17376 (16)0.08364 (12)0.0463 (2)0.0416 (4)
H11−0.14550.06190.12940.050*
C7−0.16747 (16)0.10076 (13)−0.1635 (2)0.0451 (5)
H7−0.13520.0910−0.22700.054*
C40.02162 (15)0.26957 (12)−0.0624 (2)0.0474 (5)
H4A−0.00850.2213−0.04620.071*
H4B−0.00970.2840−0.15280.071*
H4C0.00810.3096−0.00730.071*
C60.34512 (16)0.09915 (12)0.0956 (3)0.0512 (5)
H6A0.29040.06400.10010.077*
H6B0.39610.10480.18130.077*
H6C0.37930.07880.03610.077*
C9−0.3036 (2)0.16249 (18)−0.1002 (3)0.0691 (7)
H9−0.36360.1938−0.11930.083*
C10−0.2619 (2)0.13013 (15)0.0210 (3)0.0598 (6)
H10−0.29280.13940.08610.072*
C8−0.2556 (2)0.14817 (16)−0.1942 (2)0.0634 (7)
H8−0.28230.1702−0.27740.076*
O010.00000.21858 (15)0.25000.0601 (6)
H1A0.040 (2)0.1861 (19)0.216 (3)0.094 (11)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02676 (16)0.02207 (16)0.03625 (18)−0.00754 (10)0.01309 (12)0.00071 (10)
O20.0348 (6)0.0276 (6)0.0381 (7)−0.0120 (5)0.0153 (5)−0.0013 (5)
N10.0316 (7)0.0265 (7)0.0372 (8)−0.0057 (6)0.0128 (6)−0.0004 (6)
O10.0521 (8)0.0389 (7)0.0396 (7)−0.0136 (6)0.0222 (6)0.0006 (6)
C10.0286 (8)0.0235 (8)0.0385 (9)−0.0048 (6)0.0140 (7)0.0024 (6)
C20.0308 (8)0.0242 (8)0.0332 (8)−0.0089 (6)0.0121 (6)−0.0012 (6)
C30.0280 (8)0.0278 (8)0.0382 (9)−0.0059 (6)0.0113 (7)0.0009 (7)
C50.0307 (8)0.0245 (8)0.0400 (9)−0.0049 (6)0.0120 (7)0.0023 (7)
C110.0478 (11)0.0397 (10)0.0400 (10)0.0014 (8)0.0180 (8)0.0000 (8)
C70.0462 (11)0.0508 (12)0.0397 (10)0.0010 (9)0.0154 (8)0.0041 (9)
C40.0315 (9)0.0413 (11)0.0705 (14)−0.0024 (8)0.0178 (9)0.0140 (10)
C60.0395 (10)0.0303 (10)0.0824 (16)−0.0018 (8)0.0175 (10)0.0143 (10)
C90.0547 (14)0.0729 (18)0.0800 (18)0.0285 (13)0.0219 (13)0.0116 (14)
C100.0622 (14)0.0614 (15)0.0669 (15)0.0164 (12)0.0364 (12)0.0021 (12)
C80.0574 (14)0.0753 (17)0.0524 (13)0.0182 (12)0.0102 (11)0.0181 (12)
O010.0687 (16)0.0490 (14)0.0683 (15)0.0000.0296 (13)0.000

Geometric parameters (Å, °)

Cu1—O21.9894 (11)C11—H110.9300
Cu1—O2i1.9894 (11)C7—C81.380 (3)
Cu1—N11.9920 (15)C7—H70.9300
Cu1—N1i1.9921 (15)C4—H4A0.9600
O2—C11.273 (2)C4—H4B0.9600
N1—C111.337 (2)C4—H4C0.9600
N1—C71.338 (3)C6—H6A0.9600
O1—C11.241 (2)C6—H6B0.9600
C1—C21.512 (2)C6—H6C0.9600
C2—C31.394 (2)C9—C101.361 (4)
C2—C51.401 (2)C9—C81.377 (4)
C3—C5ii1.401 (2)C9—H90.9300
C3—C41.512 (2)C10—H100.9300
C5—C3ii1.401 (2)C8—H80.9300
C5—C61.508 (3)O01—H1A0.92 (3)
C11—C101.374 (3)
O2—Cu1—O2i180.00 (6)N1—C7—C8121.7 (2)
O2—Cu1—N190.64 (5)N1—C7—H7119.1
O2i—Cu1—N189.36 (5)C8—C7—H7119.1
O2—Cu1—N1i89.36 (5)C3—C4—H4A109.5
O2i—Cu1—N1i90.65 (5)C3—C4—H4B109.5
N1—Cu1—N1i180.0H4A—C4—H4B109.5
C1—O2—Cu1102.52 (10)C3—C4—H4C109.5
C11—N1—C7118.53 (17)H4A—C4—H4C109.5
C11—N1—Cu1119.71 (13)H4B—C4—H4C109.5
C7—N1—Cu1121.76 (13)C5—C6—H6A109.5
O1—C1—O2122.84 (15)C5—C6—H6B109.5
O1—C1—C2120.22 (15)H6A—C6—H6B109.5
O2—C1—C2116.93 (14)C5—C6—H6C109.5
C3—C2—C5122.37 (14)H6A—C6—H6C109.5
C3—C2—C1119.25 (14)H6B—C6—H6C109.5
C5—C2—C1118.37 (15)C10—C9—C8119.0 (2)
C2—C3—C5ii118.98 (15)C10—C9—H9120.5
C2—C3—C4120.19 (15)C8—C9—H9120.5
C5ii—C3—C4120.80 (16)C9—C10—C11119.3 (2)
C2—C5—C3ii118.64 (15)C9—C10—H10120.4
C2—C5—C6120.10 (15)C11—C10—H10120.4
C3ii—C5—C6121.25 (16)C9—C8—C7119.2 (2)
N1—C11—C10122.3 (2)C9—C8—H8120.4
N1—C11—H11118.9C7—C8—H8120.4
C10—C11—H11118.9
O2i—Cu1—O2—C193.10 (11)C1—C2—C3—C5ii179.58 (16)
N1—Cu1—O2—C189.16 (11)C5—C2—C3—C4−178.05 (18)
N1i—Cu1—O2—C1−90.84 (11)C3—C2—C5—C3ii−0.2 (3)
O2—Cu1—N1—C11−129.39 (14)C1—C2—C5—C3ii−179.59 (16)
O2i—Cu1—N1—C1150.61 (14)C3—C2—C5—C6−179.15 (18)
O2—Cu1—N1—C750.15 (15)C1—C2—C5—C61.5 (3)
O2i—Cu1—N1—C7−129.85 (15)C7—N1—C11—C100.8 (3)
Cu1—O2—C1—O1−0.1 (2)Cu1—N1—C11—C10−179.66 (18)
Cu1—O2—C1—C2179.68 (12)C11—N1—C7—C8−0.5 (3)
O1—C1—C2—C3−94.9 (2)Cu1—N1—C7—C8179.92 (18)
O2—C1—C2—C385.3 (2)C8—C9—C10—C11−0.5 (4)
O1—C1—C2—C584.5 (2)N1—C11—C10—C9−0.3 (4)
O2—C1—C2—C5−95.3 (2)C10—C9—C8—C70.7 (4)
C5—C2—C3—C5ii0.2 (3)N1—C7—C8—C9−0.2 (4)

Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, −y+1/2, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O01—H1A···O10.92 (3)1.93 (3)2.854 (2)173 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5099).

References

  • Bruker (2007). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chun, H., Dybtsev, D. N., Kim, H. & Kim, K. (2005). Chem. Eur. J.11, 3521–3529. [PubMed]
  • Diniz, R., de Abreu, H. A., de Almeida, W. B., Sansiviero, M. T. C. & Fernandes, N. G. (2002). Eur. J. Inorg. Chem. pp. 1115–1123.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography