PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1229.
Published online 2010 September 8. doi:  10.1107/S1600536810035440
PMCID: PMC2983185

catena-Poly[[(1,10-phenanthroline)copper(II)]-μ-oxalato]

Abstract

In the title coordination polymer, [Cu(C2O4)(C12H8N2)]n, the CuII atom is six-coordinated by four O atoms from two oxalate ligands and two N atoms from one 1,10-phenanthroline (phen) ligand in a distorted octa­hedral coordination geometry. The oxalate anions act as bis-bidentate ligands, bridging the Cu–phen units in zigzag chains extending parallel to [100]. Inter­chain C—H(...)O hydrogen bonding and π–π stacking inter­actions [centroid–centroid distance = 3.7439 (17) Å] assemble neighboring chains, forming a three-dimensional supra­molecular network.

Related literature

For the topologies and potential applications as functional materials of metal coordination polymers, see: Benneli & Gatteschi (2002 [triangle]); Qin et al. (2005 [triangle]); Qiu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1229-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2O4)(C12H8N2)]
  • M r = 331.76
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1229-efi2.jpg
  • a = 9.1445 (8) Å
  • b = 10.1443 (9) Å
  • c = 13.3294 (11) Å
  • V = 1236.50 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.78 mm−1
  • T = 298 K
  • 0.42 × 0.35 × 0.29 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008 [triangle]) T min = 0.544, T max = 0.612
  • 6811 measured reflections
  • 2618 independent reflections
  • 2373 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.059
  • S = 1.04
  • 2618 reflections
  • 190 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.30 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1217 Friedel pairs
  • Flack parameter: 0.019 (14)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035440/zl2304sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035440/zl2304Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Zhongshan Polytechnic.

supplementary crystallographic information

Comment

The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great interest due to their intriguing topologies and potential applications as functional materials (Benneli & Gatteschi, 2002; Qiu et al., 2007). Copper, with its variable coordination numbers and flexible coordination geometry, provides unique opportunities for the discovery of unusual networks in this interesting and challenging field (Qin et al., 2005). We chose oxalate ligands as organic spacers since this rigid molecule has proven to be able to establish a bridge between metal centers. Herein, we present the structure of the title compound, [Cu(C2O4)(C12H8N2)]n.

The CuII atom exhibits a distorted octahedral configuration coordinated by four oxygen atoms from two oxalate ligands (Cu—O = 1.9753 (18)-2.3135 (18) Å) and two nitrogen atoms from one 1,10-phenanthroline ligand (Cu—N = 2.024 (2) and 2.049 (2) Å) (Fig. 1). The oxalate ligands bridge adjacent Cu-phen units to form a one-dimensional zigzag chain along the a-axis of the unit cell. The Cu—Cu separation is 5.529 (2) Å. Interchain π-π stacking interactions between phen ligands in neighboring chainslead to the formation of sheets of connected chains in the ab-plane. The centroid to centroid distances between neighboring 1,10-phenanthroline ligands is 3.7439 (17) Å [ring (C4-C9) to ring (N2, C1 to C5) (symmetry code: –1/2+x, 3/2–y, z)]. C–H···O hydrogen bonds interconnect these sheets to extend to a three-dimensional supramolecular network motif (Table 1; Fig. 2).

Experimental

A sample of cupric acetate (0.0399 g, 0.20 mmol), oxalic acid (0.1015 g, 0.50 mmol), 1,10-phenanthroline (0.2523 g, 0.50 mmol), were added to water (10 ml). The resultant mixture was sealed in a 25 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 78 h, and then cooled to room temperature at a rate of 0.5 K/min. Colorless blocky crystals of the title compound suitable for single-crystal X-ray diffraction analyses formed in a yield of approximately 65%.

Refinement

All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 (C).

Figures

Fig. 1.
ORTEP represention of atom numbering diagram for the title complex, showing 30% probability displacement ellipsoids. Symmetry code: (i) –1/2 + x, 2.5–y, z.
Fig. 2.
View of the three-dimensional structure of the title compound.

Crystal data

[Cu(C2O4)(C12H8N2)]F(000) = 668
Mr = 331.76Dx = 1.782 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2618 reflections
a = 9.1445 (8) Åθ = 2.5–27.0°
b = 10.1443 (9) ŵ = 1.78 mm1
c = 13.3294 (11) ÅT = 298 K
V = 1236.50 (18) Å3Block, blue
Z = 40.42 × 0.35 × 0.29 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2618 independent reflections
Radiation source: fine-focus sealed tube2373 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scanθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008)h = −8→11
Tmin = 0.544, Tmax = 0.612k = −10→12
6811 measured reflectionsl = −16→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.059w = 1/[σ2(Fo2) + (0.0289P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2618 reflectionsΔρmax = 0.28 e Å3
190 parametersΔρmin = −0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 1217 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.019 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6938 (3)0.9764 (3)−0.04988 (19)0.0407 (6)
H10.66521.0617−0.06620.049*
Cu10.87241 (3)1.09675 (2)0.11815 (4)0.03062 (9)
N10.9474 (2)0.9310 (2)0.18929 (17)0.0352 (5)
O11.0814 (2)1.12990 (18)0.02682 (14)0.0377 (4)
C20.6422 (3)0.8724 (3)−0.1095 (2)0.0486 (7)
H20.58180.8883−0.16430.058*
N20.7802 (2)0.9598 (2)0.02762 (16)0.0325 (4)
O20.98329 (19)1.21773 (18)0.20589 (13)0.0377 (4)
C30.6829 (3)0.7475 (3)−0.0849 (2)0.0472 (7)
H30.65060.6770−0.12370.057*
O31.1635 (2)1.36277 (17)0.21108 (14)0.0358 (4)
C40.7727 (3)0.7242 (2)−0.0022 (2)0.0386 (6)
O41.2795 (2)1.25638 (18)0.04136 (14)0.0376 (4)
C50.8190 (3)0.8351 (2)0.05270 (19)0.0321 (5)
C60.9086 (2)0.8194 (2)0.13957 (17)0.0307 (6)
C70.9518 (3)0.6918 (3)0.1703 (2)0.0404 (6)
C80.9027 (3)0.5816 (2)0.1130 (4)0.0500 (7)
H80.92930.49710.13300.060*
C90.8186 (4)0.5967 (2)0.0306 (3)0.0485 (7)
H90.78990.5226−0.00550.058*
C101.0386 (3)0.6850 (3)0.2567 (2)0.0498 (7)
H101.07230.60380.27940.060*
C111.0740 (4)0.7970 (3)0.3077 (3)0.0555 (8)
H111.12950.79220.36600.067*
C121.0266 (3)0.9184 (3)0.2720 (2)0.0471 (7)
H121.05150.99400.30760.056*
C131.1578 (3)1.2130 (2)0.07154 (19)0.0303 (5)
C141.0979 (3)1.2700 (2)0.17167 (19)0.0288 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0439 (15)0.0420 (14)0.0362 (14)0.0018 (12)−0.0088 (12)−0.0036 (12)
Cu10.03102 (14)0.02964 (14)0.03119 (13)−0.00071 (10)−0.00153 (13)−0.00414 (16)
N10.0315 (11)0.0393 (11)0.0347 (12)0.0005 (9)−0.0041 (9)−0.0007 (9)
O10.0370 (10)0.0409 (9)0.0350 (10)−0.0020 (8)0.0025 (8)−0.0107 (8)
C20.0555 (19)0.0558 (17)0.0346 (15)0.0010 (14)−0.0120 (13)−0.0089 (13)
N20.0336 (10)0.0323 (10)0.0317 (11)0.0008 (8)−0.0013 (9)−0.0039 (9)
O20.0365 (11)0.0433 (10)0.0335 (10)−0.0101 (8)0.0092 (8)−0.0118 (9)
C30.0500 (18)0.0539 (17)0.0376 (16)−0.0090 (14)−0.0026 (14)−0.0157 (13)
O30.0382 (10)0.0329 (9)0.0361 (10)−0.0043 (8)0.0007 (8)−0.0064 (8)
C40.0393 (14)0.0370 (13)0.0395 (15)−0.0068 (11)0.0064 (11)−0.0096 (12)
O40.0363 (10)0.0388 (9)0.0377 (10)−0.0026 (8)0.0102 (8)−0.0030 (8)
C50.0320 (13)0.0337 (13)0.0307 (13)−0.0018 (11)0.0058 (11)−0.0035 (10)
C60.0288 (12)0.0328 (12)0.0305 (16)0.0004 (9)0.0055 (9)−0.0016 (9)
C70.0375 (14)0.0414 (15)0.0424 (15)0.0040 (12)0.0059 (12)0.0067 (12)
C80.0599 (17)0.0306 (12)0.0593 (18)0.0031 (10)0.011 (2)0.0032 (18)
C90.0581 (18)0.0317 (15)0.056 (2)−0.0092 (12)0.0074 (16)−0.0072 (13)
C100.0491 (18)0.0495 (18)0.0509 (19)0.0092 (13)0.0012 (14)0.0111 (14)
C110.0519 (19)0.068 (2)0.0465 (19)0.0056 (17)−0.0099 (15)0.0107 (17)
C120.0499 (17)0.0496 (16)0.0417 (16)0.0011 (13)−0.0124 (13)−0.0052 (13)
C130.0327 (13)0.0285 (12)0.0296 (12)0.0062 (10)−0.0010 (11)0.0017 (10)
C140.0293 (12)0.0297 (12)0.0274 (12)0.0011 (10)−0.0030 (10)−0.0022 (11)

Geometric parameters (Å, °)

C1—N21.311 (3)O3—Cu1ii2.3135 (18)
C1—C21.403 (4)C4—C51.407 (3)
C1—H10.9300C4—C91.428 (4)
Cu1—O21.9753 (18)O4—C131.263 (3)
Cu1—O4i1.9973 (19)O4—Cu1ii1.9973 (19)
Cu1—N22.024 (2)C5—C61.428 (3)
Cu1—N12.049 (2)C6—C71.414 (3)
Cu1—O12.2909 (19)C7—C101.401 (4)
Cu1—O3i2.3135 (18)C7—C81.426 (5)
N1—C121.325 (4)C8—C91.350 (6)
N1—C61.359 (3)C8—H80.9300
O1—C131.247 (3)C9—H90.9300
C2—C31.360 (5)C10—C111.363 (4)
C2—H20.9300C10—H100.9300
N2—C51.356 (3)C11—C121.390 (4)
O2—C141.260 (3)C11—H110.9300
C3—C41.395 (4)C12—H120.9300
C3—H30.9300C13—C141.554 (3)
O3—C141.234 (3)
N2—C1—C2123.5 (2)C3—C4—C9124.7 (3)
N2—C1—H1118.3C5—C4—C9118.4 (3)
C2—C1—H1118.3C13—O4—Cu1ii118.13 (17)
O2—Cu1—O4i93.34 (8)N2—C5—C4122.6 (2)
O2—Cu1—N2173.31 (8)N2—C5—C6117.0 (2)
O4i—Cu1—N291.68 (9)C4—C5—C6120.4 (2)
O2—Cu1—N193.68 (8)N1—C6—C7123.3 (2)
O4i—Cu1—N1172.68 (8)N1—C6—C5116.9 (2)
N2—Cu1—N181.49 (9)C7—C6—C5119.8 (2)
O2—Cu1—O178.18 (7)C10—C7—C6116.2 (2)
O4i—Cu1—O188.46 (7)C10—C7—C8125.5 (3)
N2—Cu1—O197.55 (7)C6—C7—C8118.3 (3)
N1—Cu1—O195.01 (8)C9—C8—C7121.7 (3)
O2—Cu1—O3i89.80 (7)C9—C8—H8119.1
O4i—Cu1—O3i77.92 (7)C7—C8—H8119.1
N2—Cu1—O3i95.57 (7)C8—C9—C4121.3 (3)
N1—Cu1—O3i100.03 (8)C8—C9—H9119.3
O1—Cu1—O3i161.33 (6)C4—C9—H9119.3
C12—N1—C6117.9 (2)C11—C10—C7120.2 (3)
C12—N1—Cu1130.30 (19)C11—C10—H10119.9
C6—N1—Cu1111.77 (16)C7—C10—H10119.9
C13—O1—Cu1108.21 (16)C10—C11—C12119.6 (3)
C3—C2—C1118.2 (3)C10—C11—H11120.2
C3—C2—H2120.9C12—C11—H11120.2
C1—C2—H2120.9N1—C12—C11122.7 (3)
C1—N2—C5118.1 (2)N1—C12—H12118.6
C1—N2—Cu1129.22 (18)C11—C12—H12118.6
C5—N2—Cu1112.62 (16)O1—C13—O4125.2 (2)
C14—O2—Cu1118.30 (16)O1—C13—C14117.7 (2)
C2—C3—C4120.6 (3)O4—C13—C14117.1 (2)
C2—C3—H3119.7O3—C14—O2124.9 (2)
C4—C3—H3119.7O3—C14—C13118.5 (2)
C14—O3—Cu1ii108.00 (16)O2—C14—C13116.6 (2)
C3—C4—C5116.9 (2)

Symmetry codes: (i) x−1/2, −y+5/2, z; (ii) x+1/2, −y+5/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···O4iii0.932.513.416 (4)166
C9—H9···O1iv0.932.493.160 (3)129
C2—H2···O2v0.932.523.136 (3)124
C1—H1···O4i0.932.563.072 (3)115

Symmetry codes: (iii) −x+5/2, y−1/2, z+1/2; (iv) x−1/2, −y+3/2, z; (v) −x+3/2, y−1/2, z−1/2; (i) x−1/2, −y+5/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2304).

References

  • Benneli, C. & Gatteschi, D. (2002). Chem. Rev.102, 2369–2388. [PubMed]
  • Bruker (2004). APEX2 and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Qin, C., Wang, X. L., Wang, E. B. & Su, Z. M. (2005). Inorg. Chem.44, 7122–7129. [PubMed]
  • Qiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819–1824.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography