PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1315.
Published online 2010 September 30. doi:  10.1107/S1600536810037888
PMCID: PMC2983183

Bis{1-[(E)-o-tolyl­diazen­yl]-2-naphtho­l­ato}copper(II)

Abstract

In the title complex, [Cu(C17H13N2O)2], the CuII atom is tetra­coordinated by two N atoms and two O atoms from two bidentate 1-[(E)-o-tolyl­diazen­yl]-2-naphtho­late ligands, forming a slightly distorted square-planar environment. The two N atoms and two O atoms around the CuII atom are trans to each other, with an O—Cu—O bond angle of 177.00 (9)° and an N—Cu—N bond angle of 165.63 (10)°. The average distances between the CuII atom and the coordinated O and N atoms are 1.905 (2) and 1.995 (2)Å, respectively.

Related literature

For background to 1-phenyl­azo-2-naphtol derivatives, see: Shen et al. (2003 [triangle]); Lin et al. (2010 [triangle]). For related structures: see: Lin et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1315-scheme1.jpg

Experimental

Crystal data

  • [Cu(C17H13N2O)2]
  • M r = 586.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1315-efi1.jpg
  • a = 12.9777 (2) Å
  • b = 15.2771 (3) Å
  • c = 15.1674 (2) Å
  • β = 114.514 (1)°
  • V = 2736.05 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.84 mm−1
  • T = 296 K
  • 0.18 × 0.12 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2008 [triangle]) T min = 0.864, T max = 0.921
  • 25896 measured reflections
  • 6767 independent reflections
  • 3353 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.117
  • S = 1.02
  • 6767 reflections
  • 372 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2008 [triangle]); cell refinement: SAINT-Plus (Bruker, 2008 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037888/rk2236sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037888/rk2236Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support in part from the National Science Council, Taiwan (NSC99-2113-M-033-007-MY2) and in part from the CYCU Distinctive Research Area project in Chung Yuan Christian University, Taiwan (CYCU-98-CR-CH).

supplementary crystallographic information

Comment

Recently, the 1-phenylazo-2-naphtol (PAN-H) derivatives attract our attentions because the phenylazo-naphtolate group can provide the N,O-bidentate chelation to stabilize the transition metal or main group metal complexes. Therefore, our group is interested in the synthesis and preparation of metal complexes bearing such a ligand of this kind. For instance, our group has successfully synthesized and structural characterized the Pd(II) complex with N,O-bidentate phenylazo-naphtolate ligands (Lin et al., 2010). In addition, Shen et al., (2003) reported that Zn, Cu, and Co complexes supported by N,N,O,O-tetradentate binaphthyldiamino salen ligands have been demonstrated effectively to catalyze epoxides and CO2 coupling reactions to achieve five-membered ring cyclic carbonates. In order to develop various metal systems originated from PAN derivatives and to investigate the catalytic behavior of these complexes, we report herein the synthesis and crystal structure of the title compound, (I), a potential catalyst for CO2/epoxide coupling reactions (Scheme 1).

The solid structure of (I) reveals a monomeric CuII complex (Fig. 1) containing two six-membered rings coordinated from these two N,O-bidentate phenylazo-naphtolate ligands. The geometry around Cu atom is tetra-coordinated with a slight distorted square planar environment and two nitrogen atoms and two oxygen atoms are almost coplanar in which the sums of bond angles around Cu center are 359.81 (9)°. The two N atoms and two O atoms around CuII atom are trans- to each other with O1–Cu–O2 bond angle of 177.00 (9)° and N2–Cu–N4 bond angle of 165.63 (10)°. The distances between the Cu atom and O1, O2, N2 and N4 are 1.887 (2), 1.9234 (19), 2.001 (2) and 1.988 (2)Å, respectively. These average bond distances are similar to those found in the crystal structure of (5-methoxy-2-{1-[2-(dimethylamino)ethylimino]benzyl}phenolato)copper(II) acetate (Lin et al., 2008).

Experimental

The title compound (I) was synthesized by the following procedures (Fig. 2): (E)-1-(o-tolyldiazenyl)naphthalen-2-ol (0.52 g, 2.0 mmol) and Cu(OAc)2.H2O (0.20 g, 1.0 mmol) was stirred at 298 K in the mixture of THF/MeOH (10/10 ml) for 24 h. Volatile materials were removed under vacuum and the residue was washed twice from hexane solution to give dark brown solids. The resulting solids were crystallized from CH2Cl2/Hexane (1:5) solution to yield brown crystals.

Refinement

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93Å with Uiso(H) = 1.2Ueq(C) for aromatic hydrogen; C–H = 0.96Å with Uiso(H) = 1.5Ueq(C) for CH3-group.

Figures

Fig. 1.
A view of the molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The synthetic procedure of the title compound.

Crystal data

[Cu(C17H13N2O)2]F(000) = 1212
Mr = 586.14Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6095 reflections
a = 12.9777 (2) Åθ = 2.2–23.7°
b = 15.2771 (3) ŵ = 0.84 mm1
c = 15.1674 (2) ÅT = 296 K
β = 114.514 (1)°Block, brown
V = 2736.05 (8) Å30.18 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer6767 independent reflections
Radiation source: fine-focus sealed tube3353 reflections with I > 2σ(I)
graphiteRint = 0.067
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 2.0°
[var phi] and ω scansh = −17→14
Absorption correction: multi-scan (SADABS; Bruker, 2008)k = −16→20
Tmin = 0.864, Tmax = 0.921l = −20→19
25896 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.043P)2] where P = (Fo2 + 2Fc2)/3
6767 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating\ R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.42422 (3)0.43237 (2)0.40521 (3)0.04113 (14)
O10.26886 (17)0.40571 (14)0.33857 (14)0.0500 (6)
O20.58193 (16)0.46328 (13)0.46746 (13)0.0421 (5)
N10.3598 (2)0.29328 (16)0.50680 (16)0.0398 (6)
N20.4367 (2)0.32243 (16)0.48074 (16)0.0404 (6)
N30.4821 (2)0.54485 (15)0.27524 (17)0.0386 (6)
N40.40695 (19)0.52061 (16)0.30368 (17)0.0387 (6)
C10.2076 (3)0.3729 (2)0.3789 (2)0.0399 (8)
C20.2525 (2)0.32424 (19)0.4659 (2)0.0366 (7)
C30.1783 (2)0.29426 (19)0.5098 (2)0.0394 (7)
C40.2194 (3)0.2519 (2)0.5991 (2)0.0566 (9)
H40.29660.24100.63190.068*
C50.1471 (3)0.2264 (3)0.6388 (3)0.0719 (11)
H50.17560.19730.69800.086*
C60.0324 (3)0.2431 (3)0.5925 (3)0.0720 (11)
H6−0.01560.22590.62090.086*
C7−0.0103 (3)0.2845 (2)0.5058 (3)0.0608 (10)
H7−0.08760.29580.47510.073*
C80.0612 (3)0.3105 (2)0.4618 (2)0.0465 (8)
C90.0187 (3)0.3526 (2)0.3700 (2)0.0522 (9)
H9−0.05920.35960.33620.063*
C100.0871 (3)0.3826 (2)0.3304 (2)0.0484 (8)
H100.05570.41010.27030.058*
C110.5382 (3)0.2696 (2)0.5204 (2)0.0429 (8)
C120.5964 (3)0.2492 (2)0.4643 (2)0.0500 (8)
C130.6926 (3)0.1982 (3)0.5060 (3)0.0721 (11)
H130.73390.18450.47040.086*
C140.7285 (3)0.1672 (3)0.5995 (4)0.0857 (13)
H140.79380.13320.62600.103*
C150.6700 (3)0.1856 (3)0.6532 (3)0.0793 (12)
H150.69330.16270.71530.095*
C160.5752 (3)0.2386 (2)0.6149 (2)0.0608 (10)
H160.53630.25360.65230.073*
C170.5536 (3)0.2733 (2)0.3584 (2)0.0692 (11)
H17A0.58370.32930.35240.104*
H17B0.47240.27610.33030.104*
H17C0.57760.22990.32520.104*
C180.6409 (2)0.48514 (18)0.4187 (2)0.0349 (7)
C190.5933 (2)0.52256 (19)0.3255 (2)0.0355 (7)
C200.2942 (3)0.5505 (2)0.2400 (2)0.0416 (8)
C210.2460 (3)0.5269 (2)0.1430 (2)0.0484 (8)
C220.3046 (3)0.4726 (3)0.0960 (3)0.0756 (12)
H22A0.35520.50890.08040.113*
H22B0.24940.44700.03780.113*
H22C0.34690.42710.13960.113*
C230.1347 (3)0.5547 (3)0.0899 (3)0.0699 (11)
H230.09900.54080.02440.084*
C240.0770 (3)0.6014 (3)0.1308 (4)0.0765 (13)
H240.00290.61870.09300.092*
C250.1259 (3)0.6232 (3)0.2259 (3)0.0722 (11)
H250.08590.65580.25320.087*
C260.2350 (3)0.5969 (2)0.2819 (3)0.0548 (9)
H260.26870.61030.34760.066*
C270.6647 (3)0.54545 (19)0.2761 (2)0.0398 (8)
C280.6209 (3)0.5812 (2)0.1826 (2)0.0510 (9)
H280.54320.58970.14950.061*
C290.6913 (3)0.6037 (2)0.1393 (3)0.0634 (10)
H290.66110.62820.07760.076*
C300.8071 (3)0.5902 (2)0.1869 (3)0.0680 (11)
H300.85430.60580.15720.082*
C310.8512 (3)0.5544 (2)0.2760 (3)0.0581 (10)
H310.92900.54510.30710.070*
C320.7820 (3)0.5310 (2)0.3228 (2)0.0438 (8)
C330.8260 (3)0.4931 (2)0.4167 (2)0.0476 (8)
H330.90350.48330.44810.057*
C340.7596 (2)0.4708 (2)0.4623 (2)0.0439 (8)
H340.79250.44540.52360.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0344 (2)0.0535 (3)0.0367 (2)−0.00050 (19)0.01588 (18)0.00637 (19)
O10.0418 (14)0.0691 (16)0.0385 (12)−0.0103 (11)0.0159 (11)0.0092 (11)
O20.0333 (12)0.0610 (14)0.0338 (11)0.0007 (10)0.0156 (10)0.0040 (10)
N10.0353 (16)0.0466 (16)0.0395 (14)0.0009 (13)0.0173 (13)−0.0001 (12)
N20.0338 (15)0.0501 (17)0.0399 (15)0.0051 (12)0.0179 (13)0.0030 (12)
N30.0330 (16)0.0475 (16)0.0389 (14)0.0022 (12)0.0186 (13)0.0060 (12)
N40.0299 (15)0.0493 (16)0.0371 (15)0.0013 (12)0.0141 (13)0.0047 (12)
C10.037 (2)0.044 (2)0.0384 (18)−0.0052 (15)0.0157 (16)−0.0051 (15)
C20.0329 (19)0.0407 (18)0.0362 (17)−0.0014 (14)0.0142 (15)−0.0021 (14)
C30.038 (2)0.0390 (18)0.0466 (19)0.0029 (14)0.0235 (16)−0.0009 (15)
C40.058 (2)0.062 (2)0.061 (2)0.0086 (18)0.037 (2)0.0172 (19)
C50.075 (3)0.083 (3)0.070 (3)0.001 (2)0.043 (2)0.023 (2)
C60.070 (3)0.081 (3)0.089 (3)−0.009 (2)0.056 (3)0.005 (2)
C70.048 (2)0.067 (3)0.077 (3)−0.0016 (19)0.035 (2)−0.003 (2)
C80.049 (2)0.045 (2)0.055 (2)−0.0040 (16)0.0300 (18)−0.0076 (16)
C90.035 (2)0.063 (2)0.054 (2)−0.0039 (17)0.0144 (18)−0.0071 (18)
C100.038 (2)0.061 (2)0.0408 (19)−0.0004 (16)0.0106 (17)−0.0003 (16)
C110.040 (2)0.044 (2)0.046 (2)0.0008 (15)0.0189 (16)0.0008 (15)
C120.049 (2)0.050 (2)0.060 (2)−0.0052 (17)0.0315 (18)−0.0105 (17)
C130.057 (3)0.069 (3)0.104 (3)0.007 (2)0.047 (3)−0.014 (3)
C140.059 (3)0.078 (3)0.113 (4)0.020 (2)0.029 (3)0.008 (3)
C150.063 (3)0.088 (3)0.077 (3)0.019 (2)0.019 (2)0.028 (2)
C160.053 (2)0.074 (3)0.056 (2)0.008 (2)0.0230 (19)0.011 (2)
C170.091 (3)0.065 (3)0.077 (3)−0.010 (2)0.060 (2)−0.015 (2)
C180.0309 (18)0.0362 (18)0.0389 (18)0.0007 (14)0.0157 (15)−0.0035 (14)
C190.0293 (18)0.0410 (18)0.0382 (18)−0.0002 (14)0.0161 (15)−0.0030 (14)
C200.0328 (19)0.045 (2)0.049 (2)−0.0027 (15)0.0190 (17)0.0090 (16)
C210.034 (2)0.062 (2)0.047 (2)−0.0109 (16)0.0148 (17)0.0090 (18)
C220.080 (3)0.090 (3)0.056 (2)−0.023 (2)0.027 (2)−0.014 (2)
C230.042 (2)0.099 (3)0.054 (2)−0.018 (2)0.006 (2)0.020 (2)
C240.034 (2)0.097 (3)0.088 (3)0.003 (2)0.015 (2)0.039 (3)
C250.049 (3)0.073 (3)0.104 (3)0.013 (2)0.041 (3)0.017 (3)
C260.040 (2)0.060 (2)0.066 (2)0.0055 (17)0.0244 (19)0.0097 (19)
C270.037 (2)0.0416 (19)0.0468 (19)0.0008 (14)0.0232 (16)−0.0020 (15)
C280.046 (2)0.062 (2)0.053 (2)0.0037 (17)0.0276 (18)0.0099 (17)
C290.068 (3)0.074 (3)0.066 (2)0.009 (2)0.047 (2)0.017 (2)
C300.064 (3)0.080 (3)0.086 (3)0.001 (2)0.057 (2)0.010 (2)
C310.042 (2)0.069 (3)0.074 (3)0.0005 (18)0.034 (2)0.005 (2)
C320.039 (2)0.0449 (19)0.053 (2)−0.0031 (15)0.0252 (17)−0.0056 (16)
C330.0248 (18)0.059 (2)0.057 (2)−0.0002 (15)0.0153 (17)−0.0090 (18)
C340.032 (2)0.057 (2)0.0364 (18)0.0049 (15)0.0084 (15)−0.0021 (15)

Geometric parameters (Å, °)

Cu—O11.887 (2)C15—C161.384 (5)
Cu—O21.9234 (19)C15—H150.9300
Cu—N41.988 (2)C16—H160.9300
Cu—N22.001 (2)C17—H17A0.9600
O1—C11.288 (3)C17—H17B0.9600
O2—C181.309 (3)C17—H17C0.9600
N1—N21.295 (3)C18—C191.408 (4)
N1—C21.353 (3)C18—C341.418 (4)
N2—C111.446 (4)C19—C271.455 (4)
N3—N41.273 (3)C20—C261.379 (4)
N3—C191.367 (3)C20—C211.387 (4)
N4—C201.452 (4)C21—C231.397 (5)
C1—C21.412 (4)C21—C221.490 (5)
C1—C101.434 (4)C22—H22A0.9600
C2—C31.454 (4)C22—H22B0.9600
C3—C41.391 (4)C22—H22C0.9600
C3—C81.408 (4)C23—C241.356 (6)
C4—C51.365 (4)C23—H230.9300
C4—H40.9300C24—C251.355 (5)
C5—C61.381 (5)C24—H240.9300
C5—H50.9300C25—C261.375 (5)
C6—C71.352 (5)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—C81.407 (4)C27—C281.401 (4)
C7—H70.9300C27—C321.405 (4)
C8—C91.421 (4)C28—C291.372 (4)
C9—C101.342 (4)C28—H280.9300
C9—H90.9300C29—C301.387 (5)
C10—H100.9300C29—H290.9300
C11—C121.387 (4)C30—C311.346 (5)
C11—C161.392 (4)C30—H300.9300
C12—C131.382 (5)C31—C321.403 (4)
C12—C171.512 (4)C31—H310.9300
C13—C141.380 (5)C32—C331.419 (4)
C13—H130.9300C33—C341.354 (4)
C14—C151.354 (5)C33—H330.9300
C14—H140.9300C34—H340.9300
O1—Cu—O2177.00 (9)C15—C16—H16120.1
O1—Cu—N488.82 (9)C11—C16—H16120.1
O2—Cu—N488.21 (9)C12—C17—H17A109.5
O1—Cu—N286.57 (9)C12—C17—H17B109.5
O2—Cu—N296.21 (9)H17A—C17—H17B109.5
N4—Cu—N2165.63 (10)C12—C17—H17C109.5
C1—O1—Cu124.20 (19)H17A—C17—H17C109.5
C18—O2—Cu122.56 (18)H17B—C17—H17C109.5
N2—N1—C2121.1 (2)O2—C18—C19123.7 (3)
N1—N2—C11111.4 (2)O2—C18—C34118.3 (3)
N1—N2—Cu125.01 (19)C19—C18—C34118.1 (3)
C11—N2—Cu123.40 (19)N3—C19—C18125.7 (3)
N4—N3—C19121.2 (2)N3—C19—C27113.8 (3)
N3—N4—C20112.7 (2)C18—C19—C27120.4 (3)
N3—N4—Cu127.11 (19)C26—C20—C21122.0 (3)
C20—N4—Cu119.11 (18)C26—C20—N4117.1 (3)
O1—C1—C2123.5 (3)C21—C20—N4120.7 (3)
O1—C1—C10118.2 (3)C20—C21—C23115.8 (3)
C2—C1—C10118.2 (3)C20—C21—C22123.8 (3)
N1—C2—C1124.0 (3)C23—C21—C22120.3 (3)
N1—C2—C3115.5 (3)C21—C22—H22A109.5
C1—C2—C3120.0 (3)C21—C22—H22B109.5
C4—C3—C8118.7 (3)H22A—C22—H22B109.5
C4—C3—C2122.2 (3)C21—C22—H22C109.5
C8—C3—C2119.0 (3)H22A—C22—H22C109.5
C5—C4—C3120.4 (3)H22B—C22—H22C109.5
C5—C4—H4119.8C24—C23—C21122.1 (4)
C3—C4—H4119.8C24—C23—H23118.9
C4—C5—C6121.0 (4)C21—C23—H23118.9
C4—C5—H5119.5C25—C24—C23120.9 (4)
C6—C5—H5119.5C25—C24—H24119.6
C7—C6—C5120.1 (3)C23—C24—H24119.6
C7—C6—H6120.0C24—C25—C26119.5 (4)
C5—C6—H6120.0C24—C25—H25120.2
C6—C7—C8120.5 (3)C26—C25—H25120.2
C6—C7—H7119.7C25—C26—C20119.6 (3)
C8—C7—H7119.7C25—C26—H26120.2
C7—C8—C3119.2 (3)C20—C26—H26120.2
C7—C8—C9121.9 (3)C28—C27—C32118.1 (3)
C3—C8—C9118.9 (3)C28—C27—C19122.5 (3)
C10—C9—C8122.2 (3)C32—C27—C19119.4 (3)
C10—C9—H9118.9C29—C28—C27120.8 (3)
C8—C9—H9118.9C29—C28—H28119.6
C9—C10—C1121.3 (3)C27—C28—H28119.6
C9—C10—H10119.4C28—C29—C30120.4 (3)
C1—C10—H10119.4C28—C29—H29119.8
C12—C11—C16120.8 (3)C30—C29—H29119.8
C12—C11—N2120.2 (3)C31—C30—C29120.1 (3)
C16—C11—N2119.0 (3)C31—C30—H30120.0
C13—C12—C11117.6 (3)C29—C30—H30120.0
C13—C12—C17119.2 (3)C30—C31—C32121.1 (3)
C11—C12—C17123.0 (3)C30—C31—H31119.5
C14—C13—C12121.4 (4)C32—C31—H31119.5
C14—C13—H13119.3C31—C32—C27119.6 (3)
C12—C13—H13119.3C31—C32—C33122.4 (3)
C15—C14—C13120.8 (4)C27—C32—C33118.0 (3)
C15—C14—H14119.6C34—C33—C32122.7 (3)
C13—C14—H14119.6C34—C33—H33118.7
C14—C15—C16119.5 (4)C32—C33—H33118.7
C14—C15—H15120.3C33—C34—C18121.4 (3)
C16—C15—H15120.3C33—C34—H34119.3
C15—C16—C11119.9 (3)C18—C34—H34119.3
N4—Cu—O1—C1−155.0 (2)N2—C11—C12—C13−179.8 (3)
N2—Cu—O1—C138.6 (2)C16—C11—C12—C17173.7 (3)
N4—Cu—O2—C18−35.1 (2)N2—C11—C12—C17−5.4 (5)
N2—Cu—O2—C18131.2 (2)C11—C12—C13—C141.2 (5)
C2—N1—N2—C11−169.5 (2)C17—C12—C13—C14−173.4 (4)
C2—N1—N2—Cu15.6 (4)C12—C13—C14—C150.3 (7)
O1—Cu—N2—N1−35.7 (2)C13—C14—C15—C16−2.3 (7)
O2—Cu—N2—N1145.4 (2)C14—C15—C16—C112.7 (6)
N4—Cu—N2—N1−107.3 (4)C12—C11—C16—C15−1.2 (5)
O1—Cu—N2—C11150.0 (2)N2—C11—C16—C15177.9 (3)
O2—Cu—N2—C11−28.9 (2)Cu—O2—C18—C1926.8 (4)
N4—Cu—N2—C1178.4 (5)Cu—O2—C18—C34−153.5 (2)
C19—N3—N4—C20−179.6 (2)N4—N3—C19—C18−11.1 (4)
C19—N3—N4—Cu−11.9 (4)N4—N3—C19—C27172.2 (3)
O1—Cu—N4—N3−150.1 (2)O2—C18—C19—N33.2 (5)
O2—Cu—N4—N329.4 (2)C34—C18—C19—N3−176.5 (3)
N2—Cu—N4—N3−78.9 (5)O2—C18—C19—C27179.7 (3)
O1—Cu—N4—C2016.8 (2)C34—C18—C19—C270.0 (4)
O2—Cu—N4—C20−163.6 (2)N3—N4—C20—C26−125.9 (3)
N2—Cu—N4—C2088.1 (4)Cu—N4—C20—C2665.3 (3)
Cu—O1—C1—C2−23.7 (4)N3—N4—C20—C2159.0 (4)
Cu—O1—C1—C10159.5 (2)Cu—N4—C20—C21−109.8 (3)
N2—N1—C2—C115.6 (4)C26—C20—C21—C231.3 (5)
N2—N1—C2—C3−172.6 (2)N4—C20—C21—C23176.2 (3)
O1—C1—C2—N1−12.5 (5)C26—C20—C21—C22−176.5 (3)
C10—C1—C2—N1164.3 (3)N4—C20—C21—C22−1.6 (5)
O1—C1—C2—C3176.0 (3)C20—C21—C23—C24−0.4 (5)
C10—C1—C2—C3−7.1 (4)C22—C21—C23—C24177.5 (4)
N1—C2—C3—C412.8 (4)C21—C23—C24—C250.1 (6)
C1—C2—C3—C4−175.0 (3)C23—C24—C25—C26−0.7 (6)
N1—C2—C3—C8−168.9 (3)C24—C25—C26—C201.6 (5)
C1—C2—C3—C83.3 (4)C21—C20—C26—C25−1.9 (5)
C8—C3—C4—C50.3 (5)N4—C20—C26—C25−177.0 (3)
C2—C3—C4—C5178.6 (3)N3—C19—C27—C28−4.4 (4)
C3—C4—C5—C6−1.1 (6)C18—C19—C27—C28178.7 (3)
C4—C5—C6—C70.7 (6)N3—C19—C27—C32176.0 (3)
C5—C6—C7—C80.3 (6)C18—C19—C27—C32−0.9 (4)
C6—C7—C8—C3−1.0 (5)C32—C27—C28—C29−1.9 (5)
C6—C7—C8—C9178.8 (3)C19—C27—C28—C29178.5 (3)
C4—C3—C8—C70.7 (4)C27—C28—C29—C301.1 (5)
C2—C3—C8—C7−177.7 (3)C28—C29—C30—C310.2 (6)
C4—C3—C8—C9−179.1 (3)C29—C30—C31—C32−0.6 (6)
C2—C3—C8—C92.5 (4)C30—C31—C32—C27−0.3 (5)
C7—C8—C9—C10175.7 (3)C30—C31—C32—C33179.9 (3)
C3—C8—C9—C10−4.5 (5)C28—C27—C32—C311.5 (4)
C8—C9—C10—C10.5 (5)C19—C27—C32—C31−178.9 (3)
O1—C1—C10—C9−177.7 (3)C28—C27—C32—C33−178.7 (3)
C2—C1—C10—C95.4 (5)C19—C27—C32—C330.9 (4)
N1—N2—C11—C12139.4 (3)C31—C32—C33—C34179.7 (3)
Cu—N2—C11—C12−45.6 (4)C27—C32—C33—C340.0 (5)
N1—N2—C11—C16−39.7 (4)C32—C33—C34—C18−0.8 (5)
Cu—N2—C11—C16135.3 (3)O2—C18—C34—C33−178.9 (3)
C16—C11—C12—C13−0.7 (5)C19—C18—C34—C330.8 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2236).

References

  • Bruker (2008). APEX2, SADABS and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lin, C.-S., Lin, C.-H., Huang, J.-H. & Ko, B.-T. (2008). Acta Cryst. E64, m1434. [PMC free article] [PubMed]
  • Lin, M.-L., Tsai, C.-Y., Li, C.-Y., Huang, B.-H. & Ko, B.-T. (2010). Acta Cryst. E66, m1022. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shen, Y. M., Duan, W. L. & Shi, M. (2003). J. Org. Chem.68, 1559–1562. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography