PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1260–m1261.
Published online 2010 September 15. doi:  10.1107/S1600536810036330
PMCID: PMC2983182

Tri-μ-sulfato-κ6 O:O′-bis­[aqua­(1,10-phenanthroline-κ2 N,N′)indium(III)] dihydrate

Abstract

In the title dinuclear InIII compound, [In2(SO4)3(C12H8N2)2(H2O)2]·2H2O, each InIII cation is coordinated by a 1,10-phenanthroline (phen) ligand, a water mol­ecule and three sulfate O atoms in a distorted InN2O4 octa­hedral geometry. Three sulfate anions bridge two InIII cations, forming the dinuclear entities. O—H(...)O and weak C—H(...)O hydrogen bonding is observed in the crystal structure. The crystal structure is further consolidated by π–π stacking between nearly parallel phen ring systems [dihedral angle = 4.2 (4)°], the centroid–centroid distance between benzene rings of adjacent phen ligands being 3.528 (9) Å.

Related literature

For structures of indium complexes with Lewis base ligands, see: Ahmadi et al. (2008 [triangle]); Kalateh et al. (2008 [triangle]); Xiao & Zhan (2010 [triangle]). For the crystal structure of an indium compound with a sulfonate bridging ligand, see: Ramezanipour et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1260-scheme1.jpg

Experimental

Crystal data

  • [In2(SO4)3(C12H8N2)2(H2O)2]·2H2O
  • M r = 950.32
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1260-efi1.jpg
  • a = 10.5909 (2) Å
  • b = 12.0354 (2) Å
  • c = 13.3593 (3) Å
  • α = 79.904 (1)°
  • β = 79.606 (1)°
  • γ = 64.727 (1)°
  • V = 1505.32 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.83 mm−1
  • T = 295 K
  • 0.18 × 0.12 × 0.04 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.789, T max = 0.850
  • 14402 measured reflections
  • 5277 independent reflections
  • 4377 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.082
  • wR(F 2) = 0.224
  • S = 1.17
  • 5277 reflections
  • 406 parameters
  • H-atom parameters constrained
  • Δρmax = 3.41 e Å−3
  • Δρmin = −1.32 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036330/xu5026sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036330/xu5026Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Yuanpei University, Taiwan.

supplementary crystallographic information

Comment

There are several reports on coordination of Lewis base to indium metal, such as tris(benzimidazol-2-ylmethyl)amine, [InCl2(C24H21N7)]Cl (Xiao & Zhan, 2010), 5,5'-dimethyl-2,2'-bipyridine, [InCl3(C12H12N2)(CH4O)] (Kalateh et al., 2008) and 4,4'-dimethyl-2,2'-bipyridine, [InCl3(C12H12N2)(C2H6OS)] (Ahmadi et al., 2008). The sulfonato ligand exhibits a bridging mode in a In(III) compound (Ramezanipour et al., 2005).

In the structure, the InIII atom is six-coordinated within a slightly distorted octahedral coordination geometry defined by 1,10-phenanthroline-N atoms, three sulfate-O atoms and aqua molecule as shown in Fig. 1 and Table 1). In the crystal structure, there are several O—H···O and C—H···O hydrogen bonds (Table 2 and Fig. 2). The supra-molecular structure is consolidated by π-π stacking between nearly parallel phen rings systems [dihedral angle 4.2 (4)°], the centroids distance between benzene rings Cg7 (C4—C9)···Cg8 (C16—C21) of adjacent phen ligands is 3.528 (9) Å [symmetry code: x, -1+y, z].

Experimental

The reaction of benzoic acid (0.176 g, 1.0 mmol) and sodium hydroxide (0.04 g, 1.0 mmol) in methanol/water (1:1, 10 ml) at room temperature for one hour produced a colorless solutions, to which 1,10-phenanthroline (0.218 g, 1 mmol) and In2(SO4)3.6H2O (91.0 mg, 0.50 mmol) in water (5 ml) was added. The resulting solution was stirred for one hour at 323 K and the precipitate was filtered. Colorless crystals were obtained by slow evaporation of the filtrate for more than five days.

Refinement

The water H atoms were placed in chemical sensible positions and refined in riding mode with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C). The precise of the structure is low.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
Fig. 2.
The molecular packing for the title compound. Hydrogen-bonding associations are shown as dotted lines.

Crystal data

[In2(SO4)3(C12H8N2)2(H2O)2]·2H2OZ = 2
Mr = 950.32F(000) = 940
Triclinic, P1Dx = 2.097 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5909 (2) ÅCell parameters from 10717 reflections
b = 12.0354 (2) Åθ = 2.0–25.0°
c = 13.3593 (3) ŵ = 1.83 mm1
α = 79.904 (1)°T = 295 K
β = 79.606 (1)°Prism, colorless
γ = 64.727 (1)°0.18 × 0.12 × 0.04 mm
V = 1505.32 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer5277 independent reflections
Radiation source: fine-focus sealed tube4377 reflections with I > 2σ(I)
graphiteRint = 0.079
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scanh = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2000)k = −13→14
Tmin = 0.789, Tmax = 0.850l = −15→15
14402 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H-atom parameters constrained
S = 1.17w = 1/[σ2(Fo2) + (0.0492P)2 + 58.7561P] where P = (Fo2 + 2Fc2)/3
5277 reflections(Δ/σ)max = 0.003
406 parametersΔρmax = 3.41 e Å3
0 restraintsΔρmin = −1.32 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
In10.23687 (10)0.37849 (8)0.12705 (7)0.0204 (3)
In20.15197 (10)0.63043 (9)0.34430 (7)0.0205 (3)
S1−0.0558 (3)0.6360 (3)0.1863 (3)0.0227 (7)
S20.2944 (4)0.3255 (3)0.3720 (3)0.0226 (7)
S30.3709 (3)0.5796 (3)0.1245 (3)0.0225 (7)
O10.0541 (10)0.5445 (9)0.1186 (7)0.030 (2)
O2−0.0126 (9)0.6094 (9)0.2926 (7)0.0259 (12)
O3−0.0774 (11)0.7586 (10)0.1424 (8)0.037 (3)
O4−0.1878 (11)0.6163 (11)0.1984 (8)0.037 (3)
O50.1989 (9)0.3469 (9)0.2939 (7)0.0259 (12)
O60.3012 (10)0.4480 (9)0.3727 (8)0.029 (2)
O70.4358 (11)0.2357 (10)0.3495 (8)0.035 (2)
O80.2261 (10)0.2921 (10)0.4705 (8)0.032 (2)
O90.3816 (10)0.4486 (9)0.1378 (8)0.031 (2)
O100.2435 (9)0.6503 (9)0.1889 (7)0.0259 (12)
O110.3554 (11)0.6339 (10)0.0190 (8)0.041 (3)
O120.4971 (11)0.5716 (10)0.1598 (8)0.035 (2)
O130.2881 (10)0.4015 (10)−0.0407 (7)0.0319 (17)
H13A0.23060.4310−0.08130.048*
H13B0.37220.3720−0.06840.048*
O140.0542 (10)0.6127 (10)0.4992 (7)0.0319 (17)
H14A−0.03150.63650.51100.048*
H14B0.09060.62700.54660.048*
N10.4033 (12)0.1854 (10)0.1249 (9)0.026 (3)
N20.1239 (12)0.2648 (11)0.1099 (9)0.024 (2)
N30.0258 (13)0.8347 (11)0.3484 (9)0.029 (3)
N40.2974 (13)0.7026 (11)0.3855 (9)0.027 (3)
C10.5403 (15)0.1495 (15)0.1316 (12)0.036 (4)
H10.57550.20840.13080.043*
C20.6308 (16)0.0235 (15)0.1399 (13)0.039 (4)
H20.7252−0.00020.14580.047*
C30.5828 (18)−0.0640 (14)0.1396 (12)0.038 (4)
H30.6439−0.14720.14400.046*
C40.4372 (17)−0.0271 (13)0.1323 (12)0.035 (4)
C50.3541 (15)0.0995 (13)0.1217 (10)0.025 (3)
C60.2044 (13)0.1400 (13)0.1147 (10)0.023 (3)
C70.1516 (18)0.0558 (15)0.1097 (11)0.034 (2)
C80.241 (2)−0.0743 (14)0.1168 (13)0.043 (3)
H80.2051−0.13140.11280.051*
C90.377 (2)−0.1128 (15)0.1294 (13)0.043 (3)
H90.4334−0.19710.13650.051*
C100.0089 (18)0.1022 (15)0.0970 (11)0.034 (2)
H10−0.02990.04780.09070.041*
C11−0.0732 (17)0.2247 (17)0.0936 (13)0.043 (4)
H11−0.16840.25470.08690.051*
C12−0.0121 (15)0.3057 (14)0.1005 (12)0.033 (3)
H12−0.06810.39000.09850.040*
C13−0.1113 (17)0.8982 (16)0.3400 (12)0.038 (4)
H13−0.16350.85470.33390.046*
C14−0.181 (2)1.0270 (15)0.3400 (14)0.049 (5)
H14−0.27481.06860.32950.059*
C15−0.106 (2)1.0893 (16)0.3558 (12)0.045 (4)
H15−0.15111.17440.35790.054*
C160.0386 (19)1.0274 (15)0.3690 (12)0.040 (4)
C170.0940 (16)0.9010 (14)0.3676 (11)0.030 (3)
C180.2413 (15)0.8307 (13)0.3847 (10)0.026 (3)
C190.3237 (18)0.8895 (14)0.3983 (12)0.035 (4)
C200.260 (2)1.0237 (17)0.3947 (13)0.049 (5)
H200.31371.06500.40220.058*
C210.126 (2)1.0879 (15)0.3809 (14)0.048 (5)
H210.08691.17360.37890.057*
C220.4654 (19)0.8164 (19)0.4137 (14)0.048 (3)
H220.52250.85390.42330.057*
C230.5219 (19)0.6850 (19)0.4148 (14)0.048 (3)
H230.61480.63490.42530.057*
C240.4313 (16)0.6369 (16)0.3995 (12)0.035 (4)
H240.46650.55170.39890.042*
O150.6347 (12)0.3469 (12)0.2823 (12)0.059 (4)
H15A0.56900.41700.25460.089*
H15B0.61000.28500.31130.089*
O160.1901 (16)0.5776 (15)0.6508 (10)0.069 (5)
H16A0.20240.51270.68780.104*
H16B0.23240.61220.67390.104*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
In10.0203 (5)0.0179 (5)0.0237 (5)−0.0076 (4)−0.0032 (4)−0.0041 (4)
In20.0198 (5)0.0197 (5)0.0224 (5)−0.0078 (4)−0.0016 (4)−0.0048 (4)
S10.0180 (16)0.0237 (17)0.0250 (17)−0.0057 (13)−0.0037 (13)−0.0053 (13)
S20.0238 (17)0.0209 (17)0.0225 (17)−0.0089 (14)−0.0027 (13)−0.0015 (13)
S30.0217 (17)0.0234 (17)0.0238 (17)−0.0114 (14)−0.0011 (13)−0.0022 (13)
O10.024 (5)0.028 (5)0.028 (5)0.002 (4)−0.006 (4)−0.011 (4)
O20.020 (3)0.034 (3)0.023 (3)−0.015 (2)−0.004 (2)0.008 (2)
O30.038 (6)0.026 (6)0.034 (6)−0.002 (5)−0.003 (5)−0.003 (5)
O40.033 (6)0.049 (7)0.036 (6)−0.020 (5)−0.016 (5)−0.003 (5)
O50.020 (3)0.034 (3)0.023 (3)−0.015 (2)−0.004 (2)0.008 (2)
O60.031 (5)0.023 (5)0.031 (5)−0.010 (4)−0.004 (4)0.002 (4)
O70.027 (5)0.028 (6)0.041 (6)−0.004 (5)−0.004 (5)−0.002 (5)
O80.025 (5)0.038 (6)0.030 (5)−0.012 (5)−0.003 (4)0.002 (5)
O90.030 (6)0.027 (5)0.037 (6)−0.013 (5)0.000 (4)−0.008 (4)
O100.020 (3)0.034 (3)0.023 (3)−0.015 (2)−0.004 (2)0.008 (2)
O110.039 (6)0.038 (6)0.023 (5)−0.006 (5)0.014 (5)0.008 (5)
O120.027 (5)0.036 (6)0.046 (6)−0.018 (5)0.002 (5)−0.006 (5)
O130.023 (4)0.052 (5)0.022 (4)−0.025 (4)0.003 (3)0.009 (3)
O140.023 (4)0.052 (5)0.022 (4)−0.025 (4)0.003 (3)0.009 (3)
N10.030 (7)0.020 (6)0.024 (6)−0.005 (5)−0.008 (5)−0.004 (5)
N20.023 (6)0.026 (6)0.026 (6)−0.013 (5)−0.006 (5)0.002 (5)
N30.030 (7)0.027 (7)0.029 (7)−0.009 (5)−0.004 (5)−0.011 (5)
N40.036 (7)0.026 (6)0.024 (6)−0.018 (6)−0.010 (5)−0.001 (5)
C10.017 (7)0.039 (9)0.040 (9)0.001 (6)−0.006 (6)−0.005 (7)
C20.020 (7)0.035 (9)0.046 (10)0.004 (7)−0.005 (7)−0.002 (7)
C30.044 (10)0.023 (8)0.034 (9)0.004 (7)−0.015 (7)0.000 (6)
C40.039 (9)0.018 (7)0.042 (9)−0.006 (7)−0.007 (7)0.004 (6)
C50.035 (8)0.023 (7)0.016 (6)−0.011 (6)0.001 (6)−0.007 (5)
C60.015 (6)0.026 (7)0.025 (7)−0.007 (6)0.005 (5)−0.010 (6)
C70.051 (7)0.041 (6)0.026 (5)−0.033 (6)0.001 (5)−0.008 (5)
C80.059 (7)0.022 (6)0.044 (7)−0.018 (6)0.010 (6)−0.007 (5)
C90.059 (7)0.022 (6)0.044 (7)−0.018 (6)0.010 (6)−0.007 (5)
C100.051 (7)0.041 (6)0.026 (5)−0.033 (6)0.001 (5)−0.008 (5)
C110.027 (8)0.056 (11)0.047 (10)−0.019 (8)0.000 (7)−0.009 (8)
C120.022 (7)0.027 (8)0.047 (9)−0.008 (6)−0.007 (7)0.002 (7)
C130.034 (9)0.039 (9)0.032 (8)−0.005 (7)−0.006 (7)−0.008 (7)
C140.053 (11)0.026 (9)0.050 (11)0.006 (8)−0.022 (9)0.000 (8)
C150.057 (11)0.031 (9)0.032 (9)−0.002 (8)0.000 (8)−0.013 (7)
C160.057 (11)0.028 (8)0.032 (9)−0.014 (8)−0.007 (8)−0.003 (7)
C170.034 (8)0.024 (7)0.031 (8)−0.010 (6)−0.005 (6)−0.004 (6)
C180.030 (8)0.030 (8)0.015 (6)−0.014 (6)0.009 (5)−0.002 (6)
C190.048 (10)0.028 (8)0.035 (8)−0.022 (7)−0.004 (7)−0.004 (7)
C200.084 (15)0.038 (10)0.040 (10)−0.039 (11)−0.008 (9)−0.006 (8)
C210.075 (14)0.019 (8)0.053 (11)−0.025 (9)0.000 (10)−0.005 (7)
C220.042 (7)0.066 (8)0.048 (7)−0.029 (7)−0.012 (6)−0.013 (7)
C230.042 (7)0.066 (8)0.048 (7)−0.029 (7)−0.012 (6)−0.013 (7)
C240.030 (8)0.040 (9)0.037 (9)−0.015 (7)−0.013 (7)0.003 (7)
O150.028 (6)0.042 (7)0.107 (12)−0.014 (6)−0.023 (7)0.009 (7)
O160.086 (11)0.102 (12)0.050 (8)−0.071 (10)−0.044 (8)0.038 (8)

Geometric parameters (Å, °)

In1—N12.240 (11)C3—C41.43 (2)
In1—N22.228 (11)C3—H30.9300
In1—O12.109 (9)C4—C51.39 (2)
In1—O52.187 (9)C4—C91.43 (2)
In1—O92.075 (10)C5—C61.462 (19)
In1—O132.206 (9)C6—C71.37 (2)
In2—N32.247 (12)C7—C101.40 (2)
In2—N42.246 (11)C7—C81.44 (2)
In2—O22.109 (9)C8—C91.34 (3)
In2—O62.103 (10)C8—H80.9300
In2—O102.146 (9)C9—H90.9300
In2—O142.159 (9)C10—C111.35 (2)
S1—O31.425 (11)C10—H100.9300
S1—O41.491 (11)C11—C121.40 (2)
S1—O11.504 (10)C11—H110.9300
S1—O21.509 (10)C12—H120.9300
S2—O71.440 (10)C13—C141.40 (2)
S2—O81.461 (10)C13—H130.9300
S2—O51.497 (10)C14—C151.36 (3)
S2—O61.509 (10)C14—H140.9300
S3—O111.451 (10)C15—C161.42 (3)
S3—O121.456 (11)C15—H150.9300
S3—O101.464 (10)C16—C171.38 (2)
S3—O91.512 (10)C16—C211.44 (2)
O13—H13A0.8112C17—C181.46 (2)
O13—H13B0.8450C18—C191.39 (2)
O14—H14A0.8198C19—C221.41 (2)
O14—H14B0.8726C19—C201.46 (2)
N1—C11.341 (19)C20—C211.33 (3)
N1—C51.351 (18)C20—H200.9300
N2—C121.331 (18)C21—H210.9300
N2—C61.371 (18)C22—C231.43 (3)
N3—C131.34 (2)C22—H220.9300
N3—C171.362 (19)C23—C241.37 (2)
N4—C241.326 (19)C23—H230.9300
N4—C181.394 (19)C24—H240.9300
C1—C21.40 (2)O15—H15A0.9033
C1—H10.9300O15—H15B0.8951
C2—C31.35 (2)O16—H16A0.8201
C2—H20.9300O16—H16B0.8501
O9—In1—O199.7 (4)N1—C1—H1119.8
O9—In1—O591.1 (4)C2—C1—H1119.8
O1—In1—O593.0 (4)C3—C2—C1121.0 (15)
O9—In1—O1387.6 (4)C3—C2—H2119.5
O1—In1—O1390.4 (4)C1—C2—H2119.5
O5—In1—O13176.5 (4)C2—C3—C4119.2 (14)
O9—In1—N2167.3 (4)C2—C3—H3120.4
O1—In1—N292.8 (4)C4—C3—H3120.4
O5—In1—N290.8 (4)C5—C4—C3116.8 (14)
O13—In1—N289.8 (4)C5—C4—C9119.8 (15)
O9—In1—N192.2 (4)C3—C4—C9123.3 (14)
O1—In1—N1167.8 (4)N1—C5—C4123.0 (14)
O5—In1—N189.7 (4)N1—C5—C6118.8 (12)
O13—In1—N187.2 (4)C4—C5—C6118.0 (13)
N2—In1—N175.3 (4)C7—C6—N2123.0 (13)
O6—In2—O2103.9 (4)C7—C6—C5120.3 (13)
O6—In2—O1093.0 (4)N2—C6—C5116.6 (12)
O2—In2—O1090.0 (3)C6—C7—C10117.1 (15)
O6—In2—O1488.1 (4)C6—C7—C8120.3 (15)
O2—In2—O1488.6 (4)C10—C7—C8122.6 (14)
O10—In2—O14178.4 (4)C9—C8—C7119.7 (16)
O6—In2—N490.1 (4)C9—C8—H8120.2
O2—In2—N4165.7 (4)C7—C8—H8120.2
O10—In2—N486.4 (4)C8—C9—C4121.6 (15)
O14—In2—N494.7 (4)C8—C9—H9119.2
O6—In2—N3162.6 (4)C4—C9—H9119.2
O2—In2—N392.0 (4)C11—C10—C7121.1 (14)
O10—In2—N393.8 (4)C11—C10—H10119.5
O14—In2—N385.4 (4)C7—C10—H10119.5
N4—In2—N374.4 (4)C10—C11—C12118.7 (15)
O3—S1—O4111.4 (7)C10—C11—H11120.6
O3—S1—O1109.8 (6)C12—C11—H11120.6
O4—S1—O1108.3 (6)N2—C12—C11121.7 (15)
O3—S1—O2111.8 (6)N2—C12—H12119.2
O4—S1—O2105.6 (6)C11—C12—H12119.2
O1—S1—O2109.9 (6)N3—C13—C14123.5 (17)
O7—S2—O8112.4 (6)N3—C13—H13118.2
O7—S2—O5114.4 (6)C14—C13—H13118.2
O8—S2—O5106.6 (6)C15—C14—C13118.1 (17)
O7—S2—O6107.7 (6)C15—C14—H14121.0
O8—S2—O6109.7 (6)C13—C14—H14121.0
O5—S2—O6105.9 (6)C14—C15—C16121.5 (16)
O11—S3—O12113.5 (7)C14—C15—H15119.3
O11—S3—O10108.3 (6)C16—C15—H15119.3
O12—S3—O10111.7 (6)C17—C16—C15114.6 (16)
O11—S3—O9110.9 (7)C17—C16—C21120.9 (16)
O12—S3—O9105.8 (6)C15—C16—C21124.5 (16)
O10—S3—O9106.5 (6)N3—C17—C16126.2 (15)
S1—O1—In1140.6 (6)N3—C17—C18116.2 (13)
S1—O2—In2129.8 (5)C16—C17—C18117.6 (14)
S2—O5—In1128.9 (5)C19—C18—N4120.9 (13)
S2—O6—In2131.2 (6)C19—C18—C17121.2 (14)
S3—O9—In1131.6 (6)N4—C18—C17118.0 (13)
S3—O10—In2136.9 (6)C18—C19—C22118.4 (15)
In1—O13—H13A124.8C18—C19—C20118.3 (16)
In1—O13—H13B121.1C22—C19—C20123.3 (16)
H13A—O13—H13B113.7C21—C20—C19120.9 (16)
In2—O14—H14A120.1C21—C20—H20119.5
In2—O14—H14B116.0C19—C20—H20119.5
H14A—O14—H14B112.8C20—C21—C16121.1 (15)
C1—N1—C5119.4 (13)C20—C21—H21119.4
C1—N1—In1126.4 (11)C16—C21—H21119.4
C5—N1—In1114.1 (9)C19—C22—C23120.3 (16)
C12—N2—C6118.5 (12)C19—C22—H22119.8
C12—N2—In1126.6 (10)C23—C22—H22119.8
C6—N2—In1114.9 (8)C24—C23—C22116.3 (17)
C13—N3—C17115.7 (13)C24—C23—H23121.9
C13—N3—In2127.4 (11)C22—C23—H23121.9
C17—N3—In2116.7 (9)N4—C24—C23125.0 (16)
C24—N4—C18119.1 (13)N4—C24—H24117.5
C24—N4—In2126.0 (10)C23—C24—H24117.5
C18—N4—In2114.5 (9)H15A—O15—H15B118.7
N1—C1—C2120.4 (16)H16A—O16—H16B106.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O13—H13A···O4i0.811.942.602 (15)138
O13—H13B···O12ii0.841.942.637 (16)139
O14—H14A···O8iii0.821.852.667 (17)173
O14—H14B···O160.871.762.565 (19)152
O15—H15A···O120.901.992.841 (18)156
O15—H15B···O70.892.122.887 (19)143
O16—H16A···O4iii0.822.012.808 (19)165
O16—H16B···O15iv0.851.882.72 (2)166
C8—H8···O10v0.932.533.27 (2)137
C9—H9···O12v0.932.543.425 (19)158
C11—H11···O11i0.932.413.24 (2)148
C15—H15···O15vi0.932.563.28 (2)135

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y−1, z; (vi) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5026).

References

  • Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307. [PMC free article] [PubMed]
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354. [PMC free article] [PubMed]
  • Ramezanipour, F., Aghabozorg, H., Shokrollahi, A., Shamsipur, M., Stoeckli-Evans, H., Soleimannejad, J. & Sheshmani, S. (2005). J. Mol. Struct.779, 77–86.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xiao, Z. & Zhan, D. (2010). Acta Cryst. E66, m1040–m1041. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography