PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1230–m1231.
Published online 2010 September 8. doi:  10.1107/S1600536810035452
PMCID: PMC2983181

catena-Poly[(μ2-3-carb­oxy-5-nitro­benzoato)(μ3-5-nitro­benzene-1,3-dicarboxyl­ato)(1,10-phenanthroline)gadolinium(III)]

Abstract

The crystal structure of the title complex, [Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]n, contains polymeric chains made up of GdIII atoms, 1,10-phenanthroline and fully or half-deproton­ated 5-nitro­benzene-1,3-dicarb­oxy­lic acid (H2 L) ligands. The GdIII atom is coordinated in a distorted bicapped trigonal-prismatic fashion by six O atoms from two HL and three L 2− ligands, and by two N atoms from the 1,10-phenanthroline ligand. The L 2− ligands bridge the Gd–phenanthroline units, forming chains running parallel to [100]. O—H(...)O hydrogen bonding as well as π–π stacking inter­actions with an inter­planar distance of 3.599 (2) Å assemble neighboring polymeric chains.

Related literature

For background to π–π stacking in biological systems, see: Deisenhofer & Michel (1989 [triangle]). For some crystal structures of metal complexes exhibiting π–π stacking, see: Li et al. (2005 [triangle]); Pan & Xu (2004 [triangle]); Wu et al. (2003 [triangle]); Qiu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1230-scheme1.jpg

Experimental

Crystal data

  • [Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]
  • M r = 756.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1230-efi1.jpg
  • a = 10.300 (3) Å
  • b = 12.030 (3) Å
  • c = 12.150 (3) Å
  • α = 70.581 (4)°
  • β = 85.925 (4)°
  • γ = 76.512 (2)°
  • V = 1380.6 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.48 mm−1
  • T = 298 K
  • 0.28 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.544, T max = 0.612
  • 6876 measured reflections
  • 4837 independent reflections
  • 4259 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.121
  • S = 1.04
  • 4837 reflections
  • 407 parameters
  • H-atom parameters constrained
  • Δρmax = 2.51 e Å−3
  • Δρmin = −2.59 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035452/wm2394sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035452/wm2394Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Zhongshan Polytechnic.

supplementary crystallographic information

Comment

Recently, we became interested in the nature of π–π stacking as it plays an important role in some biological processes (Deisenhofer & Michel, 1989). A series of metal complexes incorporating different aromatic ligands has been prepared and their crystal structures provide useful information about π–π stacking (Wu et al., 2003; Pan & Xu, 2004; Li et al., 2005 Qiu et al., 2009). As part of our ongoing investigations, the title complex, (I), incorporating 1,10-phenanthroline, has been prepared.

As depicted in Fig. 1, the GdIII atom has a distorted bicapped trigonal-prismatic coordination, defined by six O atoms from two 1-carboxy-5-nitro-3-benzoate (HL-, where L is 5-nitro-1,3-benzenedicarboxyic acid) and three 5-nitro-1,3-benzenedicarboxylate ligands (L2-), and two N atoms from the 1,10-phenanthroline ligand. The L2- ligands link Gd-phenanthroline moieties, forming an infinite polymeric chain running along [100]. The HL- and L2- ligands in this complex have two different coordination modes: the first ligand uses one of its carboxylate groups to link one GdIII ions in a chelating coordination mode, the other carboxylate group links two GdIII ions in a bis-monodentate coordination mode, whereas the other ligand uses its carboxylate groups to link two GdIII ions in a bridging coordination mode. In the chain, the closest Gd···Gd separation is 4.333 (3) Å. These chains interact with each other by π–π stacking of adjacent phenanthroline groups (interplanar distance of 3.599 (2) Å). O—H···O hydrogen bonding interactions between carboxyl and carboxylate groups of neighbouring ligands help to consolidate the structure (Table 1; Fig. 2).

Experimental

A sample of Gd2O3 (0.0732 g, 0.20 mmol), 5-nitro-1,3-benzenedicarboxylic acid (0.1015 g, 0.50 mmol), 1,10-phenanthroline (0.0991 g, 0.50 mmol) and distilled water (8 ml) were mixed in a Teflon-lined stainless steel vessel with 15 ml capacity. The mixture was heated under autogenous pressure at 393 K for 48 h and cooled slowly to room temperature.

Refinement

The C— and O—bound H atoms were included in the riding-model approximation, with C—H = 0.97 Å and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq (O). The highest and the deepest hole the final difference Fourier map are located 1.03 and 1.05 Å, respectively, from the Gd1 atom.

Figures

Fig. 1.
Part of the structure of (I), showing the coordination of the Gd atom with the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids, H atoms as spheres of arbitrary radius. [Symmetry codes: (i) 2 - x, -y, 1 - z; ...
Fig. 2.
View of π–π interactions consolidating the three-dimensional network of (I).

Crystal data

[Gd(C8H3NO6)(C8H4NO6)(C12H8N2)]Z = 2
Mr = 756.69F(000) = 742
Triclinic, P1Dx = 1.820 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.300 (3) ÅCell parameters from 5111 reflections
b = 12.030 (3) Åθ = 2.6–27.7°
c = 12.150 (3) ŵ = 2.48 mm1
α = 70.581 (4)°T = 298 K
β = 85.925 (4)°Prism, colorless
γ = 76.512 (2)°0.28 × 0.26 × 0.22 mm
V = 1380.6 (7) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4860 independent reflections
Radiation source: fine-focus sealed tube4259 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scanθmax = 25.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.544, Tmax = 0.612k = −13→14
6896 measured reflectionsl = −14→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0811P)2] where P = (Fo2 + 2Fc2)/3
4837 reflections(Δ/σ)max < 0.001
407 parametersΔρmax = 2.51 e Å3
0 restraintsΔρmin = −2.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0366 (7)0.0929 (6)0.6625 (5)0.0330 (14)
C21.0511 (6)0.1117 (6)0.7766 (5)0.0308 (13)
C31.1673 (7)0.0513 (6)0.8416 (6)0.0407 (16)
H31.23710.00400.81320.049*
C41.1762 (8)0.0635 (7)0.9504 (6)0.0465 (18)
C51.0753 (7)0.1320 (6)0.9960 (6)0.0423 (16)
H51.08410.13781.06940.051*
C60.9615 (7)0.1914 (7)0.9309 (6)0.0419 (16)
C70.9488 (7)0.1835 (6)0.8200 (6)0.0374 (15)
H70.87230.22610.77550.045*
C80.8451 (9)0.2616 (8)0.9788 (7)0.057 (2)
C90.5970 (6)0.1875 (6)0.3097 (5)0.0292 (13)
C100.4627 (6)0.2185 (5)0.2498 (5)0.0270 (12)
C110.4353 (6)0.3072 (6)0.1421 (5)0.0321 (13)
H110.50130.34400.09950.039*
C120.3063 (6)0.3388 (6)0.1007 (5)0.0328 (14)
C130.2038 (6)0.2870 (6)0.1622 (5)0.0314 (13)
H130.11690.31280.13310.038*
C140.2355 (6)0.1959 (5)0.2679 (5)0.0256 (12)
C150.3643 (6)0.1606 (5)0.3105 (5)0.0279 (12)
H150.38580.09760.38040.033*
C170.5715 (9)0.1824 (8)0.6347 (8)0.061 (2)
H170.56630.10880.62800.073*
C180.4954 (10)0.2208 (11)0.7209 (9)0.085 (4)
H180.44240.17270.77040.103*
C190.4993 (10)0.3254 (11)0.7313 (9)0.081 (3)
H190.44840.35190.78780.097*
C200.5823 (9)0.3984 (9)0.6552 (8)0.064 (3)
C210.5923 (12)0.5114 (12)0.6605 (11)0.091 (4)
H210.54190.54200.71480.109*
C220.6719 (14)0.5746 (11)0.5897 (12)0.096 (4)
H220.67810.64760.59730.115*
C230.7507 (11)0.5337 (9)0.4998 (10)0.074 (3)
C240.8317 (13)0.5984 (10)0.4198 (12)0.095 (4)
H240.84090.67220.42340.114*
C250.8966 (12)0.5558 (9)0.3378 (11)0.088 (3)
H250.95080.59910.28430.106*
C260.8809 (9)0.4432 (7)0.3339 (8)0.057 (2)
H260.92400.41510.27530.068*
C270.7400 (8)0.4227 (7)0.4915 (7)0.0451 (18)
C280.6557 (7)0.3526 (7)0.5716 (6)0.0447 (18)
Gd10.82752 (3)0.14792 (3)0.44144 (2)0.02604 (13)
N11.2997 (8)−0.0016 (8)1.0209 (7)0.072 (2)
N20.2724 (6)0.4320 (6)−0.0147 (5)0.0500 (16)
N30.6506 (6)0.2452 (5)0.5622 (5)0.0448 (15)
N40.8089 (6)0.3768 (5)0.4088 (5)0.0414 (14)
O10.9505 (5)0.1690 (4)0.5913 (4)0.0412 (11)
O21.1124 (5)0.0033 (5)0.6459 (4)0.0466 (12)
O31.3864 (8)−0.0642 (9)0.9807 (8)0.118 (4)
O41.3055 (9)0.0089 (8)1.1154 (7)0.113 (3)
O50.8641 (6)0.2486 (6)1.0881 (5)0.0647 (16)
H5A0.79310.27351.11640.097*
O60.7481 (8)0.3226 (11)0.9241 (7)0.140 (5)
O70.6825 (4)0.2498 (4)0.2637 (4)0.0335 (10)
O80.6158 (4)0.1067 (4)0.4063 (4)0.0413 (11)
O90.3605 (6)0.4789 (5)−0.0694 (5)0.0593 (15)
O100.1591 (7)0.4607 (8)−0.0498 (6)0.103 (3)
C160.1297 (6)0.1363 (6)0.3374 (5)0.0300 (13)
O110.0114 (4)0.1968 (4)0.3252 (4)0.0421 (11)
O120.1665 (5)0.0297 (4)0.4038 (4)0.0448 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.038 (4)0.044 (4)0.022 (3)−0.013 (3)−0.002 (3)−0.014 (3)
C20.039 (4)0.037 (3)0.020 (3)−0.010 (3)−0.004 (3)−0.012 (3)
C30.039 (4)0.048 (4)0.032 (4)−0.001 (3)−0.007 (3)−0.013 (3)
C40.047 (4)0.059 (5)0.030 (4)−0.007 (3)−0.014 (3)−0.010 (3)
C50.055 (4)0.052 (4)0.023 (3)−0.011 (3)−0.004 (3)−0.016 (3)
C60.049 (4)0.053 (4)0.025 (4)−0.010 (3)0.001 (3)−0.016 (3)
C70.043 (4)0.052 (4)0.020 (3)−0.010 (3)−0.002 (3)−0.014 (3)
C80.055 (5)0.080 (6)0.041 (5)0.001 (4)0.000 (4)−0.038 (4)
C90.019 (3)0.044 (4)0.024 (3)−0.006 (2)−0.001 (2)−0.012 (3)
C100.020 (3)0.039 (3)0.021 (3)−0.005 (2)0.000 (2)−0.009 (3)
C110.025 (3)0.045 (4)0.024 (3)−0.011 (3)0.004 (2)−0.006 (3)
C120.038 (4)0.041 (3)0.017 (3)−0.015 (3)0.000 (3)−0.002 (3)
C130.024 (3)0.046 (4)0.024 (3)−0.007 (3)−0.001 (2)−0.011 (3)
C140.023 (3)0.035 (3)0.019 (3)−0.008 (2)0.001 (2)−0.008 (2)
C150.027 (3)0.036 (3)0.019 (3)−0.006 (2)−0.002 (2)−0.006 (3)
C170.054 (5)0.060 (5)0.057 (6)−0.004 (4)0.025 (4)−0.014 (4)
C180.073 (7)0.093 (8)0.062 (7)0.011 (6)0.037 (5)−0.014 (6)
C190.070 (7)0.101 (8)0.052 (6)0.010 (6)0.029 (5)−0.024 (6)
C200.065 (6)0.072 (6)0.053 (5)0.019 (4)−0.007 (4)−0.039 (5)
C210.084 (8)0.117 (10)0.088 (9)−0.001 (7)0.008 (7)−0.071 (8)
C220.113 (10)0.080 (7)0.116 (10)0.008 (7)−0.021 (8)−0.075 (8)
C230.089 (7)0.057 (5)0.079 (7)−0.002 (5)−0.022 (6)−0.033 (5)
C240.114 (10)0.056 (6)0.128 (11)−0.026 (6)−0.008 (8)−0.039 (7)
C250.106 (9)0.049 (5)0.099 (9)−0.029 (5)0.006 (7)−0.004 (6)
C260.072 (6)0.041 (4)0.050 (5)−0.014 (4)0.002 (4)−0.006 (4)
C270.047 (4)0.041 (4)0.047 (5)0.002 (3)−0.015 (4)−0.019 (3)
C280.038 (4)0.054 (5)0.036 (4)0.004 (3)−0.005 (3)−0.017 (4)
Gd10.02026 (18)0.0381 (2)0.01841 (18)−0.00571 (12)0.00062 (11)−0.00808 (13)
N10.068 (5)0.094 (6)0.053 (5)0.011 (4)−0.035 (4)−0.034 (4)
N20.049 (4)0.065 (4)0.023 (3)−0.016 (3)−0.006 (3)0.006 (3)
N30.041 (3)0.051 (4)0.036 (3)0.003 (3)0.011 (3)−0.017 (3)
N40.046 (3)0.042 (3)0.030 (3)−0.004 (3)−0.002 (3)−0.007 (3)
O10.052 (3)0.048 (3)0.026 (2)−0.009 (2)−0.013 (2)−0.014 (2)
O20.043 (3)0.059 (3)0.046 (3)−0.004 (2)−0.002 (2)−0.031 (3)
O30.082 (5)0.163 (8)0.098 (6)0.055 (6)−0.056 (5)−0.072 (6)
O40.113 (6)0.153 (8)0.066 (5)0.039 (6)−0.060 (5)−0.058 (5)
O50.060 (4)0.104 (5)0.033 (3)−0.009 (3)0.009 (3)−0.035 (3)
O60.092 (6)0.236 (11)0.086 (6)0.077 (7)−0.041 (5)−0.112 (7)
O70.027 (2)0.044 (2)0.024 (2)−0.0110 (18)−0.0016 (18)−0.0002 (19)
O80.026 (2)0.056 (3)0.030 (3)−0.014 (2)−0.0062 (19)0.006 (2)
O90.060 (4)0.069 (4)0.031 (3)−0.023 (3)0.008 (3)0.012 (3)
O100.065 (5)0.137 (7)0.063 (5)−0.040 (4)−0.032 (4)0.044 (4)
C160.032 (3)0.045 (4)0.014 (3)−0.013 (3)0.001 (2)−0.009 (3)
O110.026 (2)0.056 (3)0.040 (3)−0.012 (2)0.008 (2)−0.010 (2)
O120.040 (3)0.054 (3)0.032 (3)−0.021 (2)−0.005 (2)0.004 (2)

Geometric parameters (Å, °)

C1—O21.242 (8)C19—H190.9300
C1—O11.256 (8)C20—C281.405 (10)
C1—C21.500 (8)C20—C211.411 (16)
C2—C31.390 (9)C21—C221.322 (18)
C2—C71.391 (9)C21—H210.9300
C3—C41.390 (10)C22—C231.463 (16)
C3—H30.9300C22—H220.9300
C4—C51.374 (10)C23—C241.391 (16)
C4—N11.487 (10)C23—C271.402 (12)
C5—C61.370 (10)C24—C251.338 (16)
C5—H50.9300C24—H240.9300
C6—C71.399 (9)C25—C261.417 (13)
C6—C81.498 (10)C25—H250.9300
C7—H70.9300C26—N41.309 (10)
C8—O61.187 (10)C26—H260.9300
C8—O51.308 (9)C27—N41.380 (9)
C9—O81.243 (8)C27—C281.445 (11)
C9—O71.268 (7)C28—N31.348 (9)
C9—C101.519 (8)Gd1—O12i2.322 (5)
C10—C111.383 (9)Gd1—O2ii2.342 (4)
C10—C151.392 (8)Gd1—O11iii2.349 (4)
C11—C121.376 (9)Gd1—O12.403 (4)
C11—H110.9300Gd1—O82.442 (4)
C12—C131.396 (9)Gd1—O72.499 (4)
C12—N21.479 (8)Gd1—N32.571 (5)
C13—C141.383 (9)Gd1—N42.611 (6)
C13—H130.9300N1—O41.204 (9)
C14—C151.378 (8)N1—O31.214 (10)
C14—C161.498 (8)N2—O101.204 (9)
C15—H150.9300N2—O91.220 (8)
C17—N31.324 (11)O2—Gd1ii2.342 (4)
C17—C181.401 (12)O5—H5A0.8200
C17—H170.9300C16—O121.252 (8)
C18—C191.316 (16)C16—O111.257 (7)
C18—H180.9300O11—Gd1iv2.349 (4)
C19—C201.434 (15)O12—Gd1i2.322 (5)
O2—C1—O1125.4 (6)C25—C24—C23120.8 (10)
O2—C1—C2116.8 (6)C25—C24—H24119.6
O1—C1—C2117.8 (6)C23—C24—H24119.6
C3—C2—C7120.1 (6)C24—C25—C26118.6 (10)
C3—C2—C1118.6 (6)C24—C25—H25120.7
C7—C2—C1121.3 (6)C26—C25—H25120.7
C4—C3—C2118.1 (6)N4—C26—C25123.3 (9)
C4—C3—H3121.0N4—C26—H26118.3
C2—C3—H3121.0C25—C26—H26118.3
C5—C4—C3122.9 (7)N4—C27—C23121.9 (9)
C5—C4—N1118.7 (6)N4—C27—C28118.2 (6)
C3—C4—N1118.4 (7)C23—C27—C28119.9 (8)
C6—C5—C4118.5 (6)N3—C28—C20122.7 (8)
C6—C5—H5120.8N3—C28—C27118.0 (6)
C4—C5—H5120.8C20—C28—C27119.4 (8)
C5—C6—C7120.7 (7)O12i—Gd1—O2ii76.27 (19)
C5—C6—C8120.9 (6)O12i—Gd1—O11iii124.82 (17)
C7—C6—C8118.3 (7)O2ii—Gd1—O11iii76.07 (18)
C2—C7—C6119.7 (6)O12i—Gd1—O175.73 (17)
C2—C7—H7120.1O2ii—Gd1—O1126.15 (17)
C6—C7—H7120.1O11iii—Gd1—O183.73 (17)
O6—C8—O5124.0 (7)O12i—Gd1—O880.85 (15)
O6—C8—C6124.2 (7)O2ii—Gd1—O875.42 (17)
O5—C8—C6111.8 (7)O11iii—Gd1—O8134.60 (16)
O8—C9—O7122.3 (5)O1—Gd1—O8141.63 (17)
O8—C9—C10118.4 (5)O12i—Gd1—O7132.49 (15)
O7—C9—C10119.1 (5)O2ii—Gd1—O781.73 (16)
C11—C10—C15120.8 (5)O11iii—Gd1—O788.64 (15)
C11—C10—C9121.4 (5)O1—Gd1—O7147.63 (16)
C15—C10—C9117.6 (5)O8—Gd1—O752.84 (14)
C12—C11—C10117.3 (6)O12i—Gd1—N384.99 (19)
C12—C11—H11121.4O2ii—Gd1—N3145.6 (2)
C10—C11—H11121.4O11iii—Gd1—N3137.47 (19)
C11—C12—C13123.4 (6)O1—Gd1—N374.72 (18)
C11—C12—N2119.3 (6)O8—Gd1—N373.32 (19)
C13—C12—N2117.3 (6)O7—Gd1—N390.53 (17)
C14—C13—C12117.9 (6)O12i—Gd1—N4138.41 (18)
C14—C13—H13121.1O2ii—Gd1—N4144.26 (19)
C12—C13—H13121.1O11iii—Gd1—N474.83 (18)
C15—C14—C13120.1 (5)O1—Gd1—N470.35 (17)
C15—C14—C16119.7 (5)O8—Gd1—N4112.27 (17)
C13—C14—C16120.2 (5)O7—Gd1—N477.29 (16)
C14—C15—C10120.5 (6)N3—Gd1—N463.6 (2)
C14—C15—H15119.8O4—N1—O3124.4 (8)
C10—C15—H15119.8O4—N1—C4117.7 (8)
N3—C17—C18123.5 (10)O3—N1—C4117.9 (7)
N3—C17—H17118.2O10—N2—O9122.6 (6)
C18—C17—H17118.2O10—N2—C12119.1 (6)
C19—C18—C17119.6 (10)O9—N2—C12118.3 (6)
C19—C18—H18120.2C17—N3—C28117.6 (6)
C17—C18—H18120.2C17—N3—Gd1121.2 (5)
C18—C19—C20119.8 (8)C28—N3—Gd1119.7 (5)
C18—C19—H19120.1C26—N4—C27117.6 (7)
C20—C19—H19120.1C26—N4—Gd1124.1 (5)
C28—C20—C21119.8 (10)C27—N4—Gd1116.9 (5)
C28—C20—C19116.8 (9)C1—O1—Gd1130.5 (4)
C21—C20—C19123.4 (9)C1—O2—Gd1ii153.7 (4)
C22—C21—C20121.3 (10)C8—O5—H5A109.5
C22—C21—H21119.4C9—O7—Gd190.7 (3)
C20—C21—H21119.4C9—O8—Gd194.0 (4)
C21—C22—C23122.2 (10)O12—C16—O11124.9 (6)
C21—C22—H22118.9O12—C16—C14117.3 (5)
C23—C22—H22118.9O11—C16—C14117.8 (6)
C24—C23—C27117.7 (10)C16—O11—Gd1iv127.2 (4)
C24—C23—C22124.9 (10)C16—O12—Gd1i161.3 (4)
C27—C23—C22117.4 (11)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1; (iii) x+1, y, z; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O7v0.822.032.737 (7)145

Symmetry codes: (v) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2394).

References

  • Bruker (2004). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deisenhofer, J. & Michel, H. (1989). EMBO J.8, 2149–2170. [PubMed]
  • Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21. [PubMed]
  • Pan, T.-T. & Xu, D.-J. (2004). Acta Cryst. E60, m56–m58.
  • Qiu, Y.-C., Deng, H., Yang, S.-H., Mou, J.-X., Daiguebonne, C., Kerbellec, N., Guillou, O. & Batten, S. R. (2009). Inorg. Chem.48, 3976–3981. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, Z.-Y., Xue, Y.-H. & Xu, D.-J. (2003). Acta Cryst. E59, m809–m811.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography