PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1327.
Published online 2010 September 30. doi:  10.1107/S1600536810038043
PMCID: PMC2983174

catena-Poly[[(2,9-dimethyl-1,10-phenanthroline-κ2 N,N′)cobalt(II)]-μ-malonato-κ4 O 1,O 1′:O 3,O 3′]

Abstract

In the title compound, [Co(C3H2O4)(C14H12N2)]n, the CoII ion is in a distorted octa­hedral coordination being chelated by a 2,9-dimethyl-1,10-phenanthroline mol­ecule (dmphen) and two carboxyl­ate groups of two malonate ligands The malonate ligand acts in a bridging mode, forming coordination chains along [100]. π–π stacking inter­actions between dmphen ligands [inter­planar distances = 3.414 (4) and 3.447 (4) Å] organize the coordination polymers into supra­molecular double chains.

Related literature

For coordination polymers with dicarboxyl­ate ligands, see: Rao et al. (2004 [triangle]); Zheng et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1327-scheme1.jpg

Experimental

Crystal data

  • [Co(C3H2O4)(C14H12N2)]
  • M r = 369.23
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1327-efi1.jpg
  • a = 6.8767 (14) Å
  • b = 9.5293 (19) Å
  • c = 11.149 (2) Å
  • α = 86.83 (3)°
  • β = 89.53 (3)°
  • γ = 89.52 (3)°
  • V = 729.4 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 295 K
  • 0.33 × 0.11 × 0.07 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.653, T max = 0.782
  • 7245 measured reflections
  • 3309 independent reflections
  • 2590 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.127
  • S = 1.06
  • 3309 reflections
  • 222 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810038043/gk2299sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810038043/gk2299Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund in Ningbo University and the Scientific Research Fund of Ningbo University (grant No. XYL09078).

supplementary crystallographic information

Comment

Metal-phenanthroline complexes and their derivatives have attracted much attention because of their peculiar features. In turn dicarboxylate ligands play an important role in modern coordination chemistry and many complexes have been published with them as ligands (Rao et al., 2004; Zheng et al., 2004). The title complex, (I), was recently prepared and its crystal structure is reported here.

The crystal structure of the title compound consists of [Co(C14H12N2)(C3H2O4)]n chains (Fig. 1). Each Co atom is surrounded by two nitrogen atoms of one 2,9-dimethyl-1,10-phenanthroline ligand and four oxygen atoms of two bis-chelating malonate anions to complete a seriously distorted octahedral coordination (Table 1). The malonate ligands bridge the Co atoms to form neutral one-dimensional chains [Co(C14H12N2)(C3H2O4)]n along [100] with parallel orientated phen ligands at the same side. As shown in Fig. 2, through π-π stacking interactions the dmphen ligands of two adjacent coordination chains form supramolecular double chains. The interplanar distances between the neighbouring dmphen ligands are 3.414 (4) and 3.447 (4) Å.

Experimental

Addition of 2.0 ml (1 M) NaOH to an aqueous solution of CoCl2.6H2O (0.238 g, 1.00 mmol) in 10.0 ml H2O produced a pink precipitate, which was centrifugated and washed with doubly destilled water for several times until no Cl- anions were detectable. The fresh precipitate was then added to a stirred solution of malonic acid (0.104 g, 1.00 mmol) and 2,9-dimethyl-1,10-phenanthroline hydrate (0.226 g, 1 mmol) in CH3OH/H2O (1:1 30 ml). The red mixture was allowed to stand at room temperature and after several days, red plate-like crystals suitable for X-ray analysis were formed. grown by slow evaporation.

Refinement

All H atoms were placed in geometrically calculated position (C-H = 0.93-0.97 Å) and refined in a riding model approximation with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
ORTEP view of the title compound. The displacement ellipsoids are drawn at the 30% probability level [symmetry code: (i) x - 1, y, z; (ii) x + 1, y, z].
Fig. 2.
A double chain formed through π–π stacking interactions between dmphen ligands.

Crystal data

[Co(C3H2O4)(C14H12N2)]Z = 2
Mr = 369.23F(000) = 378
Triclinic, P1Dx = 1.681 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8767 (14) ÅCell parameters from 5667 reflections
b = 9.5293 (19) Åθ = 3.5–27.5°
c = 11.149 (2) ŵ = 1.20 mm1
α = 86.83 (3)°T = 295 K
β = 89.53 (3)°Plate, red
γ = 89.52 (3)°0.33 × 0.11 × 0.07 mm
V = 729.4 (2) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer3309 independent reflections
Radiation source: fine-focus sealed tube2590 reflections with I > 2σ(I)
graphiteRint = 0.032
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = −8→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −12→12
Tmin = 0.653, Tmax = 0.782l = −14→14
7245 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0568P)2 + 0.8449P] where P = (Fo2 + 2Fc2)/3
3309 reflections(Δ/σ)max = 0.015
222 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.23932 (7)0.27775 (5)0.73432 (4)0.03063 (16)
N10.2539 (4)0.0677 (3)0.6805 (2)0.0283 (6)
N20.2379 (4)0.1661 (3)0.9024 (2)0.0264 (5)
C10.2526 (5)0.0223 (4)0.5691 (3)0.0346 (7)
C20.2653 (5)−0.1224 (4)0.5494 (4)0.0435 (9)
H2A0.2659−0.15210.47130.052*
C30.2765 (5)−0.2181 (4)0.6433 (4)0.0439 (9)
H3A0.2860−0.31330.62970.053*
C40.2737 (5)−0.1737 (3)0.7614 (3)0.0347 (7)
C50.2824 (5)−0.2671 (4)0.8659 (4)0.0437 (9)
H5A0.2923−0.36330.85710.052*
C60.2766 (5)−0.2182 (4)0.9773 (4)0.0413 (9)
H6A0.2831−0.28121.04390.050*
C70.2604 (5)−0.0702 (3)0.9941 (3)0.0322 (7)
C80.2485 (5)−0.0137 (4)1.1072 (3)0.0396 (8)
H8A0.2515−0.07241.17660.048*
C90.2326 (5)0.1280 (4)1.1146 (3)0.0382 (8)
H9A0.22490.16601.18960.046*
C100.2276 (5)0.2173 (3)1.0107 (3)0.0312 (7)
C110.2530 (4)0.0242 (3)0.8937 (3)0.0266 (6)
C120.2620 (4)−0.0274 (3)0.7747 (3)0.0281 (7)
C130.2325 (6)0.1281 (5)0.4669 (3)0.0461 (9)
H13A0.11900.18500.47890.069*
H13B0.22020.08090.39350.069*
H13C0.34550.18670.46230.069*
C140.2121 (6)0.3725 (4)1.0190 (3)0.0424 (9)
H14A0.33910.41041.03040.064*
H14B0.12980.39331.08580.064*
H14C0.15740.41370.94620.064*
O10.4924 (4)0.3945 (4)0.7882 (3)0.0622 (9)
O20.4560 (5)0.3466 (4)0.6052 (3)0.0675 (9)
O30.9214 (4)0.2696 (3)0.6983 (3)0.0646 (9)
O41.0687 (5)0.4640 (4)0.7095 (5)0.0950 (15)
C150.5528 (5)0.4017 (3)0.6837 (3)0.0331 (7)
C160.7380 (5)0.4791 (4)0.6502 (3)0.0360 (8)
H16A0.74210.49750.56380.043*
H16C0.73590.56910.68690.043*
C170.9200 (5)0.3999 (4)0.6886 (3)0.0343 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0319 (2)0.0274 (2)0.0321 (3)−0.00231 (17)−0.00176 (17)0.00297 (17)
N10.0266 (13)0.0290 (13)0.0292 (14)−0.0007 (11)0.0004 (11)−0.0026 (11)
N20.0265 (13)0.0237 (12)0.0289 (14)−0.0015 (10)−0.0022 (10)−0.0008 (10)
C10.0240 (15)0.045 (2)0.0350 (18)−0.0042 (14)0.0005 (13)−0.0083 (15)
C20.040 (2)0.052 (2)0.040 (2)−0.0062 (17)0.0002 (16)−0.0192 (18)
C30.0363 (19)0.0362 (19)0.061 (3)−0.0042 (16)−0.0004 (17)−0.0184 (18)
C40.0284 (16)0.0271 (16)0.049 (2)−0.0028 (13)0.0011 (15)−0.0025 (15)
C50.0397 (19)0.0227 (16)0.068 (3)−0.0011 (15)−0.0021 (18)0.0024 (16)
C60.0390 (19)0.0301 (18)0.053 (2)−0.0029 (15)−0.0025 (17)0.0164 (16)
C70.0245 (15)0.0318 (17)0.0393 (19)−0.0044 (13)−0.0043 (13)0.0089 (14)
C80.0374 (18)0.047 (2)0.0331 (19)−0.0060 (16)−0.0018 (15)0.0127 (16)
C90.0413 (19)0.050 (2)0.0238 (17)−0.0036 (16)−0.0022 (14)−0.0013 (15)
C100.0293 (16)0.0340 (17)0.0303 (17)−0.0014 (14)−0.0010 (13)−0.0011 (13)
C110.0210 (14)0.0272 (15)0.0314 (17)−0.0034 (12)−0.0024 (12)0.0022 (12)
C120.0223 (14)0.0261 (15)0.0360 (18)−0.0014 (12)0.0002 (12)−0.0006 (13)
C130.046 (2)0.064 (3)0.0282 (19)−0.0095 (19)−0.0032 (16)−0.0023 (17)
C140.052 (2)0.0385 (19)0.037 (2)0.0000 (17)0.0006 (17)−0.0080 (16)
O10.0481 (16)0.097 (3)0.0412 (17)−0.0195 (17)0.0000 (13)0.0045 (16)
O20.063 (2)0.083 (2)0.059 (2)−0.0335 (18)0.0073 (16)−0.0249 (18)
O30.0481 (17)0.0449 (17)0.101 (3)0.0117 (14)−0.0200 (17)−0.0033 (17)
O40.0404 (17)0.059 (2)0.183 (5)−0.0152 (16)−0.040 (2)0.027 (2)
C150.0266 (15)0.0300 (16)0.042 (2)0.0048 (13)−0.0038 (14)0.0032 (14)
C160.0349 (17)0.0307 (17)0.042 (2)−0.0006 (14)−0.0031 (15)0.0068 (14)
C170.0327 (17)0.0369 (18)0.0327 (18)0.0018 (15)−0.0001 (14)0.0021 (14)

Geometric parameters (Å, °)

Co1—O12.180 (3)C7—C81.400 (5)
Co1—O22.145 (3)C8—C91.361 (5)
Co1—O3i2.229 (3)C8—H8A0.9300
Co1—O4i2.126 (4)C9—C101.399 (5)
Co1—N12.122 (3)C9—H9A0.9300
Co1—N22.103 (3)C10—C141.489 (5)
Co1—C152.512 (4)C11—C121.440 (5)
Co1—C17i2.519 (3)C13—H13A0.9600
N1—C11.338 (4)C13—H13B0.9600
N1—C121.350 (4)C13—H13C0.9600
N2—C101.328 (4)C14—H14A0.9600
N2—C111.364 (4)C14—H14B0.9600
C1—C21.410 (5)C14—H14C0.9600
C1—C131.485 (5)O1—C151.233 (4)
C2—C31.352 (6)O2—C151.246 (5)
C2—H2A0.9300O3—C171.240 (4)
C3—C41.405 (5)O3—Co1ii2.229 (3)
C3—H3A0.9300O4—C171.226 (5)
C4—C121.411 (4)O4—Co1ii2.126 (4)
C4—C51.428 (5)C15—C161.511 (5)
C5—C61.350 (6)C16—C171.509 (5)
C5—H5A0.9300C16—H16A0.9700
C6—C71.436 (5)C16—H16C0.9700
C6—H6A0.9300C17—Co1ii2.519 (3)
C7—C111.398 (4)
N2—Co1—N179.24 (10)C9—C8—H8A120.3
N2—Co1—O4i119.53 (16)C7—C8—H8A120.3
N1—Co1—O4i140.97 (13)C8—C9—C10120.8 (3)
N2—Co1—O2136.06 (13)C8—C9—H9A119.6
N1—Co1—O292.45 (12)C10—C9—H9A119.6
O4i—Co1—O293.90 (16)N2—C10—C9120.9 (3)
N2—Co1—O189.80 (11)N2—C10—C14118.4 (3)
N1—Co1—O1123.50 (12)C9—C10—C14120.7 (3)
O4i—Co1—O192.30 (13)N2—C11—C7122.8 (3)
O2—Co1—O159.10 (12)N2—C11—C12117.3 (3)
N2—Co1—O3i97.95 (12)C7—C11—C12119.9 (3)
N1—Co1—O3i86.71 (11)N1—C12—C4123.0 (3)
O4i—Co1—O3i58.47 (12)N1—C12—C11117.8 (3)
O2—Co1—O3i124.82 (14)C4—C12—C11119.2 (3)
O1—Co1—O3i149.76 (13)C1—C13—H13A109.5
C1—N1—C12119.0 (3)C1—C13—H13B109.5
C1—N1—Co1128.3 (2)H13A—C13—H13B109.5
C12—N1—Co1112.6 (2)C1—C13—H13C109.5
C10—N2—C11118.9 (3)H13A—C13—H13C109.5
C10—N2—Co1128.1 (2)H13B—C13—H13C109.5
C11—N2—Co1113.0 (2)C10—C14—H14A109.5
N1—C1—C2120.9 (3)C10—C14—H14B109.5
N1—C1—C13118.2 (3)H14A—C14—H14B109.5
C2—C1—C13120.9 (3)C10—C14—H14C109.5
C3—C2—C1120.4 (3)H14A—C14—H14C109.5
C3—C2—H2A119.8H14B—C14—H14C109.5
C1—C2—H2A119.8C15—O1—Co190.4 (2)
C2—C3—C4120.0 (3)C15—O2—Co191.7 (2)
C2—C3—H3A120.0O1—C15—O2118.8 (3)
C4—C3—H3A120.0O1—C15—C16120.9 (3)
C3—C4—C12116.7 (3)O2—C15—C16120.3 (3)
C3—C4—C5123.9 (3)O1—C15—Co160.2 (2)
C12—C4—C5119.4 (3)O2—C15—Co158.6 (2)
C6—C5—C4121.2 (3)C16—C15—Co1178.2 (2)
C6—C5—H5A119.4C17—C16—C15113.5 (3)
C4—C5—H5A119.4C17—C16—H16A108.9
C5—C6—C7120.8 (3)C15—C16—H16A108.9
C5—C6—H6A119.6C17—C16—H16C108.9
C7—C6—H6A119.6C15—C16—H16C108.9
C11—C7—C8117.2 (3)H16A—C16—H16C107.7
C11—C7—C6119.4 (3)O4—C17—O3119.4 (4)
C8—C7—C6123.4 (3)O4—C17—C16120.1 (3)
C9—C8—C7119.4 (3)O3—C17—C16120.5 (3)

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2299).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2004). Inorg. Chem.43, 2590–2596. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography