PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2632.
Published online 2010 September 25. doi:  10.1107/S1600536810033957
PMCID: PMC2983172

(2-Pyrid­yl)[5-(2-pyridyl­carbon­yl)-2-pyrid­yl]methanone

Abstract

In the centrosymmetric title compound, C17H11N3O2, the dihedral angle between the central and pendant pyridyl rings is 50.29 (9)°. In the crystal, mol­ecules stack along the a axis by π–π inter­actions between the pyridine rings with centroid–centroid distances of 3.845 (2) Å. The N atom and one of the C atoms of the central ring are disordered by symmetry.

Related literature

For studies on other pyridinyl-based methanone species, see: Papaefstathiou & Perlepes (2002 [triangle]); Dendrinou-Samara et al. (2003 [triangle]); Crowder et al. (2004 [triangle]); Chen et al. (2005 [triangle]); Wan et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2632-scheme1.jpg

Experimental

Crystal data

  • C17H11N3O2
  • M r = 289.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2632-efi1.jpg
  • a = 3.8453 (13) Å
  • b = 8.447 (3) Å
  • c = 11.202 (3) Å
  • α = 108.672 (6)°
  • β = 97.251 (6)°
  • γ = 99.772 (6)°
  • V = 333.29 (19) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 K
  • 0.60 × 0.50 × 0.29 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.622, T max = 1.000
  • 2301 measured reflections
  • 1623 independent reflections
  • 1198 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.177
  • S = 1.07
  • 1623 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810033957/jj2048sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810033957/jj2048Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.

supplementary crystallographic information

Comment

Di-2-pyridylmethanone has attracted great interest in recent years as it can exist in various forms in stabilizing its metal complexes, including its neat ketone form, singly and doubly deprotonated gem-diol forms, as well as the monoanion of its hemiacetal form (Papaefstathiou et al., 2002; Dendrinou-Samara et al., 2003; Crowder et al., 2004). Therefore, homolog compounds such as 2,6-pyridinediylbis(2-pyridyl)methanone (Chen et al., 2005) and 2,6-pyridinediylbis(3-pyridyl)methanone (Wan et al., 2008) were also synthesized and characterized.

In the present study, a new member of this family, namely 2,5-pyridinediylbis(2-pyridyl)methanone (C17H11N3O2), is reported. X-ray diffraction analysis shows that the N2 and C9 atoms of the 2,5-pyridinediyl ring have an equal occupancy at the same site. Thus the molecule is centrosymmetric with two 2-pyridyl methanone groups bonding to the 2,5-pyridinediyl ring at the 2 and 5 positions, respectively. The 2-pyridyl and the center 2,5-pyridinediyl rings exhibit a dihedral angle of 50.29 (9)° (Fig. 1). Along the a axis, the packing between the molecules is provided by weak un-covalent interaction only: /p-electron···/p-electron ring interaction. The distance between the centroids of the proximate pyridyl rings equals 3.845 (2) Å, as shown in Fig. 2.

Experimental

The preparation of the title compound followed the procedure previously developed for 2,6-pyridinediylbis(3-pyridyl)methanone (Wan et al., 2008).The crude product was extracted with chloroform, and the combined organic extract was dried over anhydrous sodium sulfate and finally concentrated in vacuo to give a brown oil. Further purification by chromatography on silica gel (Rf= 0.44, eluent: ether acetate/dichloromethane = 1:6, v/v), giving 2.96 g of light yellow powder of 2,5-pyridinediylbis(2-pyridyl)methanone in 41% yield; m.p. 108-110°C; The yellow crystals of the title compound having a average 0.40 × 0.30 × 0.20 mm dimension were obtained by slow evaporation from its solution of dichloromethane/N,N-dimethylformamide 1/1 (v/v).

Refinement

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C—H = 0.93 Å and Uĩso~(H) = 1.2U~eq~(C).

Figures

Fig. 1.
The atom-numbering scheme of the title compound C17H11N3O2. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as sticks of arbitrary radii. Symmetry code: i -x + 2, -y + 2, -z.
Fig. 2.
The packing illustration of the title compound, C17H11N3O2. The red-dashed lines indicate weak π···π stacking interactions.

Crystal data

C17H11N3O2Z = 1
Mr = 289.30F(000) = 150
Triclinic, P1Dx = 1.441 Mg m3
Hall symbol: -P 1Melting point: 401 K
a = 3.8453 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.447 (3) ÅCell parameters from 230 reflections
c = 11.202 (3) Åθ = 1.9–28.1°
α = 108.672 (6)°µ = 0.10 mm1
β = 97.251 (6)°T = 293 K
γ = 99.772 (6)°Block, yellow
V = 333.29 (19) Å30.60 × 0.50 × 0.29 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1623 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
graphiteRint = 0.016
ω–scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan SADABS (Bruker, 2007)h = −5→4
Tmin = 0.622, Tmax = 1.000k = −11→11
2301 measured reflectionsl = −12→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.096P)2 + 0.0878P] where P = (Fo2 + 2Fc2)/3
1623 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O11.3180 (5)1.09147 (19)0.33644 (14)0.0620 (6)
N10.7459 (5)0.6838 (2)0.16816 (16)0.0402 (4)
N20.9591 (5)1.1260 (2)0.10902 (16)0.0377 (4)0.50
C90.9591 (5)1.1260 (2)0.10902 (16)0.0377 (4)0.50
H9A0.93311.21270.17980.045*0.50
C10.9713 (5)0.8073 (2)0.26845 (17)0.0339 (4)
C21.0530 (6)0.7939 (3)0.38842 (19)0.0435 (5)
H2A1.21080.88260.45560.052*
C30.8934 (7)0.6452 (3)0.4057 (2)0.0517 (6)
H3A0.93780.63310.48550.062*
C40.6689 (7)0.5157 (3)0.3033 (2)0.0524 (6)
H4A0.56330.41340.31200.063*
C50.6028 (6)0.5402 (3)0.1870 (2)0.0485 (6)
H5A0.45020.45190.11810.058*
C61.1320 (5)0.9691 (2)0.24786 (17)0.0372 (5)
C71.0544 (5)0.9809 (2)0.11607 (17)0.0333 (4)
C81.0969 (5)0.8553 (2)0.00732 (18)0.0369 (5)
H8A1.16420.75730.01410.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0862 (13)0.0422 (8)0.0381 (8)−0.0157 (8)−0.0097 (8)0.0113 (7)
N10.0422 (10)0.0355 (8)0.0394 (9)−0.0001 (7)0.0059 (7)0.0136 (7)
N20.0467 (11)0.0295 (8)0.0341 (9)0.0035 (7)0.0096 (7)0.0092 (7)
C90.0467 (11)0.0295 (8)0.0341 (9)0.0035 (7)0.0096 (7)0.0092 (7)
C10.0360 (10)0.0330 (9)0.0334 (9)0.0065 (7)0.0077 (7)0.0128 (7)
C20.0538 (13)0.0404 (10)0.0373 (10)0.0106 (9)0.0065 (9)0.0157 (8)
C30.0712 (16)0.0510 (12)0.0471 (12)0.0209 (11)0.0180 (11)0.0299 (10)
C40.0632 (15)0.0379 (10)0.0671 (15)0.0110 (10)0.0239 (12)0.0291 (10)
C50.0511 (13)0.0355 (10)0.0534 (13)−0.0015 (9)0.0097 (10)0.0140 (9)
C60.0421 (11)0.0328 (9)0.0326 (9)0.0012 (8)0.0041 (8)0.0108 (7)
C70.0333 (10)0.0298 (8)0.0335 (9)−0.0016 (7)0.0047 (7)0.0116 (7)
C80.0418 (11)0.0302 (8)0.0380 (10)0.0041 (7)0.0075 (8)0.0132 (7)

Geometric parameters (Å, °)

O1—C61.216 (2)C3—C41.372 (3)
N1—C51.336 (3)C3—H3A0.9300
N1—C11.341 (2)C4—C51.383 (3)
N2—C8i1.358 (2)C4—H4A0.9300
N2—C71.360 (3)C5—H5A0.9300
N2—H9A0.9207C6—C71.507 (2)
C1—C21.386 (3)C7—C81.385 (3)
C1—C61.501 (3)C8—C9i1.358 (2)
C2—C31.385 (3)C8—N2i1.358 (2)
C2—H2A0.9300C8—H8A0.9300
C5—N1—C1116.84 (17)C5—C4—H4A120.6
C8i—N2—C7118.59 (16)N1—C5—C4123.62 (19)
C8i—N2—H9A118.5N1—C5—H5A118.2
C7—N2—H9A123.0C4—C5—H5A118.2
N1—C1—C2123.47 (17)O1—C6—C1120.89 (17)
N1—C1—C6117.03 (16)O1—C6—C7119.68 (16)
C2—C1—C6119.48 (17)C1—C6—C7119.42 (15)
C3—C2—C1118.27 (19)N2—C7—C8120.92 (17)
C3—C2—H2A120.9N2—C7—C6116.89 (16)
C1—C2—H2A120.9C8—C7—C6122.09 (16)
C4—C3—C2119.06 (19)C9i—C8—C7120.49 (17)
C4—C3—H3A120.5N2i—C8—C7120.49 (17)
C2—C3—H3A120.5C9i—C8—H8A119.8
C3—C4—C5118.71 (18)N2i—C8—H8A119.8
C3—C4—H4A120.6C7—C8—H8A119.8
C5—N1—C1—C2−1.5 (3)C2—C1—C6—C7177.66 (17)
C5—N1—C1—C6−179.82 (19)C8i—N2—C7—C80.5 (3)
N1—C1—C2—C30.0 (3)C8i—N2—C7—C6177.03 (17)
C6—C1—C2—C3178.27 (19)O1—C6—C7—N2−45.2 (3)
C1—C2—C3—C41.6 (3)C1—C6—C7—N2133.4 (2)
C2—C3—C4—C5−1.6 (4)O1—C6—C7—C8131.2 (2)
C1—N1—C5—C41.5 (3)C1—C6—C7—C8−50.2 (3)
C3—C4—C5—N10.0 (4)N2—C7—C8—C9i−0.5 (3)
N1—C1—C6—O1174.7 (2)C6—C7—C8—C9i−176.85 (17)
C2—C1—C6—O1−3.7 (3)N2—C7—C8—N2i−0.5 (3)
N1—C1—C6—C7−4.0 (3)C6—C7—C8—N2i−176.85 (17)

Symmetry codes: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2048).

References

  • Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X.-D. & Mak, T. C. W. (2005). Inorg. Chim. Acta, 358, 1107–1112.
  • Crowder, K. N., Garcia, S. J., Burr, R. L., North, J. M., Wilson, M. H., Conley, B. L., Fanwick, P. E., White, P. S., Sienerth, K. D. & Granger, R. M. (2004). Inorg. Chem.43, 72–78. [PubMed]
  • Dendrinou-Samara, C., Alexiou, M., Zaleski, C. M., Kampf, J. W., Kirk, M. L., Kessissoglou, D. P. & Pecoraro, V. L. (2003). Angew. Chem. Int. Ed.42, 3763–3766. [PubMed]
  • Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem.23, 249–274.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wan, C. Q., Chen, X. D. & Mak, T. C. W. (2008). CrystEngComm, 10, 475–478.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography