PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1188.
Published online 2010 September 4. doi:  10.1107/S1600536810034252
PMCID: PMC2983167

Aqua­(9,10-dioxoanthracene-1,5-disul­fonato-κO 1)bis­(1,10-phenanthroline-κ2 N,N′)nickel(II)

Abstract

In the mononuclear title complex, [Ni(C14H6O8S2)(C12H8N2)2(H2O)], the NiII atom is in a distorted octa­hedral coordination formed by four N atoms from two chelating 1,10-phenanthroline ligands and by two O atoms, one from a 9,10-dioxoanthracene-1,5-disulfonate ligand and the other from a water mol­ecule. An intra­molecular O—H(...)O hydrogen bond occurs. In the crystal, inter­molecular O—H(...)O hydrogen bonds link the mononuclear complexes into chains extending parallel to [010]. Furthermore, π–π stacking inter­actions [centroid–centroid distance = 3.5696 (6) Å] stabilize the crystal structuure.

Related literature

For the structures and applications of organo­sulfonate-based metal complexes, see: Dai et al. (2006 [triangle]); Cui et al. (2007 [triangle]); Zhao et al. (2007 [triangle]); Jia et al. (2009 [triangle]); Chen et al. (2002 [triangle]); Yang et al. (2007 [triangle]). For mol­ecular self-assembly by non-covalent inter­actions in crystal engineering, see: Hunter (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1188-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H6O8S2)(C12H8N2)2(H2O)]
  • M r = 803.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1188-efi1.jpg
  • a = 8.8784 (19) Å
  • b = 12.802 (3) Å
  • c = 14.723 (3) Å
  • α = 98.016 (3)°
  • β = 100.520 (3)°
  • γ = 91.380 (2)°
  • V = 1627.1 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 294 K
  • 0.34 × 0.32 × 0.28 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.774, T max = 0.808
  • 8942 measured reflections
  • 5693 independent reflections
  • 4243 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.104
  • S = 1.05
  • 5693 reflections
  • 487 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810034252/bt5331sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034252/bt5331Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support from Tianjin University.

supplementary crystallographic information

Comment

Organosulfonate-based metal complexes with popular nitrogen-containing coligands have recently drawn more attention due to their adjustable coordination ability and interesting applications in optical and catalysis (Cui et al., 2007; Yang et al., 2007). In this regard, arenedisulfonates have rigid spacers and potentially multiple binding sites, showing various coordination modes ranging from terminally monodentate to bridging hexadentate (Chen et al., 2002). Simultaneously, their six oxygen atoms in sulfonate groups can also form H-bonds, which readily result in high-dimensional supramolecular architectures (Hunter, 1993). As part of our investigations on the coordination chemistry of organosulfonate ligands (Dai et al. 2006; Jia et al., 2009; Zhao et al., 2007), herein, we report the crystal structure of a NiII complex with 1,10-phenanthroline and 9,10-dioxo-anthracene-1,5-disulfonate ligands (I).

The mononuclear structure of I was shown in Fig. 1. The unique Ni IIatom in I is six-coordinated by four N atoms from two chelating 1,10-phenanthroline ligands, one monodentate sulfonate O atom from one 9,10-dioxoanthraquinone-1,5-disulfonate anion, and one coordinated water molecule, exhibiting a slightly distorted octahedral coordination geometry (Table 1). Acting as a typically chelating ligand, two 1,10-phenanthroline ligands coordinate to the central NiII atom in an asymmetric modes. In contrast, 9,10-dioxoanthraquinone-1,5-disulfonate binds the NiII ion in a monodentate mode. Additionally, one intramolecular hydrogen bond between the coordinated water molecule and sulfonate group of 9,10-dioxoanthraquinone-1,5-disulfonate was observed (Table 2), which obviously helps to stabilize the mononuclear entity.

In the packing structure of I, one interligand O—H ···O hydrogen bond between the aqua and 9,10-dioxoanthraquinone-1,5-disulfonate link the discrete monoclear structures into a one-dimensional chain (Fig. 2 and Table 2). Furthermore, the neighboring chains are stacked into a two-dimensional layer by π··· π stacking interactions between the pyridine ring of 1,10-phenanthroline and the benzene ring of 9,10-dioxoanthraquinone-1,5-disulfonate. The centroid-centroid distance and the dihedral angle between the two rings are 3.5696 (6) Å and 3.969 (1)°, respectively.

Experimental

The title complex was synthesized by heating a mixture of NiAc2.4H2O (49.77 mg,0.2 mmol), 1,10-phenanthroline (39.64 mg,0.2 mmol), Anthraquinone-1,5-disulfonic acid disodium salt (82.4 mg, 0.2 mmol) and H2O (10 ml) in a 23 ml Teflon-lined autoclave under autogenous pressure at 140¯C for two days. Yellow block-shaped crystals suitable for X-ray analysis were obtained in 40% yield. Anal. Calcd. for: C38H24N4NiO9S2: C, 56.81, H, 3.01, N, 6.97%. Found: C, 56.87; H, 3.01; N, 7.01%.

Refinement

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93 and O – H = 0.85 Å. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O)].

Figures

Fig. 1.
The molecular structure of the title compound with intramolecular hydrogen-bonding interactions. Displacement ellipsoids are drawn at the 30% probability level. Only H atoms involved in hydrogen bonds have been included.
Fig. 2.
two-dimensional supramolecular nework of I formed by hydrogen-bonding and π–π stacking interactions.

Crystal data

[Ni(C14H6O8S2)(C12H8N2)2(H2O)]Z = 2
Mr = 803.44F(000) = 824
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8784 (19) ÅCell parameters from 2813 reflections
b = 12.802 (3) Åθ = 2.3–25.2°
c = 14.723 (3) ŵ = 0.79 mm1
α = 98.016 (3)°T = 294 K
β = 100.520 (3)°Block, yellow
γ = 91.380 (2)°0.34 × 0.32 × 0.28 mm
V = 1627.1 (6) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer5693 independent reflections
Radiation source: fine-focus sealed tube4243 reflections with I > 2σ(I)
graphiteRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.774, Tmax = 0.808k = −15→12
8942 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0542P)2 + 0.3249P] where P = (Fo2 + 2Fc2)/3
5693 reflections(Δ/σ)max = 0.001
487 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.51255 (4)0.67299 (3)0.76204 (2)0.03729 (13)
S10.20477 (9)0.73215 (6)0.85480 (5)0.0398 (2)
O10.3705 (2)0.74179 (15)0.85534 (13)0.0405 (5)
O20.1640 (2)0.76635 (16)0.94350 (14)0.0476 (5)
O30.1423 (2)0.62602 (16)0.81432 (15)0.0525 (6)
O40.3113 (3)1.19722 (17)0.55562 (14)0.0599 (7)
O50.4395 (3)1.36031 (18)0.63825 (16)0.0649 (7)
O60.1714 (3)1.33736 (18)0.62472 (18)0.0662 (7)
O70.3099 (3)0.95751 (17)0.92421 (14)0.0589 (7)
O80.0471 (3)1.1338 (2)0.6416 (2)0.0840 (10)
O90.3412 (3)0.56089 (17)0.70180 (16)0.0596 (6)
H9A0.27990.56300.74010.089*
H9B0.37180.50070.68300.089*
N10.6648 (3)0.80251 (18)0.81146 (17)0.0409 (6)
N20.4355 (3)0.7717 (2)0.66457 (17)0.0459 (6)
N30.6219 (3)0.58737 (18)0.86155 (16)0.0373 (6)
N40.6551 (3)0.58717 (18)0.68469 (16)0.0390 (6)
C10.6355 (3)0.8838 (2)0.7615 (2)0.0401 (7)
C20.7799 (4)0.8171 (3)0.8840 (2)0.0510 (8)
H20.80280.76180.91820.061*
C30.8673 (4)0.9109 (3)0.9112 (3)0.0669 (11)
H30.94700.91760.96270.080*
C40.8372 (4)0.9926 (3)0.8631 (3)0.0687 (11)
H40.89401.05630.88220.082*
C50.7204 (4)0.9808 (2)0.7847 (3)0.0516 (9)
C60.6834 (4)1.0610 (3)0.7278 (3)0.0618 (10)
H60.74051.12500.74180.074*
C70.5677 (5)1.0457 (3)0.6545 (3)0.0583 (10)
H70.54541.10000.61900.070*
C80.4773 (4)0.9488 (3)0.6291 (2)0.0501 (9)
C90.3536 (4)0.9285 (3)0.5550 (2)0.0595 (10)
H90.32310.98110.51900.071*
C100.2769 (5)0.8328 (3)0.5347 (2)0.0639 (10)
H100.19620.81880.48400.077*
C110.3212 (4)0.7549 (3)0.5915 (2)0.0551 (9)
H110.26840.68930.57730.066*
C120.5131 (4)0.8670 (2)0.6827 (2)0.0422 (7)
C130.7236 (3)0.5218 (2)0.8298 (2)0.0358 (7)
C140.6111 (4)0.5946 (2)0.9512 (2)0.0462 (8)
H140.54160.63990.97380.055*
C150.7008 (4)0.5364 (3)1.0124 (2)0.0516 (9)
H150.69290.54511.07510.062*
C160.7991 (4)0.4675 (2)0.9804 (2)0.0451 (8)
H160.85680.42731.02060.054*
C170.8134 (3)0.4573 (2)0.8862 (2)0.0408 (7)
C180.9110 (4)0.3856 (2)0.8449 (2)0.0495 (8)
H180.96650.34040.88100.059*
C190.9248 (4)0.3818 (3)0.7543 (2)0.0510 (8)
H190.98930.33430.72930.061*
C200.8404 (3)0.4508 (2)0.6967 (2)0.0418 (7)
C210.8543 (4)0.4540 (3)0.6035 (2)0.0506 (8)
H210.92050.41040.57580.061*
C220.7691 (4)0.5223 (3)0.5541 (2)0.0515 (8)
H220.77750.52580.49260.062*
C230.6699 (4)0.5864 (2)0.5963 (2)0.0459 (8)
H230.61100.63100.56110.055*
C240.7396 (3)0.5191 (2)0.73459 (19)0.0367 (7)
C250.2713 (3)0.9862 (2)0.84869 (19)0.0361 (7)
C260.1617 (3)0.9217 (2)0.77210 (18)0.0316 (6)
C270.1177 (3)0.8148 (2)0.77205 (19)0.0360 (7)
C280.0029 (3)0.7658 (3)0.7013 (2)0.0501 (9)
H28−0.02680.69560.70120.060*
C29−0.0685 (4)0.8182 (3)0.6313 (2)0.0580 (10)
H29−0.14660.78380.58520.070*
C30−0.0244 (3)0.9214 (2)0.6293 (2)0.0448 (8)
H30−0.07140.95640.58130.054*
C310.0898 (3)0.9730 (2)0.69854 (19)0.0365 (7)
C320.1328 (3)1.0862 (2)0.6930 (2)0.0409 (7)
C330.2762 (3)1.1352 (2)0.75234 (18)0.0326 (6)
C340.3511 (3)1.2275 (2)0.73629 (19)0.0348 (6)
S20.31237 (9)1.28400 (6)0.62861 (5)0.0406 (2)
C360.4761 (4)1.2716 (2)0.8016 (2)0.0437 (8)
H360.52531.33280.79170.052*
C370.5305 (4)1.2280 (2)0.8810 (2)0.0462 (8)
H370.61331.26070.92450.055*
C380.4619 (3)1.1357 (2)0.8958 (2)0.0409 (7)
H380.49981.10500.94840.049*
C390.3358 (3)1.0890 (2)0.83153 (18)0.0338 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0464 (2)0.0297 (2)0.0329 (2)0.00424 (16)−0.00302 (17)0.00803 (16)
S10.0423 (4)0.0375 (4)0.0388 (4)−0.0023 (3)−0.0022 (3)0.0168 (3)
O10.0382 (12)0.0387 (11)0.0413 (12)0.0021 (9)−0.0029 (9)0.0083 (9)
O20.0522 (13)0.0541 (14)0.0403 (12)0.0037 (10)0.0078 (10)0.0211 (10)
O30.0591 (14)0.0380 (12)0.0569 (14)−0.0133 (10)−0.0046 (11)0.0179 (10)
O40.0929 (18)0.0480 (14)0.0317 (12)0.0215 (12)−0.0056 (11)0.0007 (10)
O50.0696 (16)0.0626 (16)0.0610 (15)−0.0220 (13)−0.0017 (13)0.0266 (13)
O60.0672 (16)0.0620 (16)0.0826 (18)0.0345 (13)0.0226 (13)0.0398 (14)
O70.0852 (17)0.0502 (14)0.0338 (12)−0.0166 (12)−0.0153 (11)0.0189 (10)
O80.0617 (16)0.0684 (17)0.112 (2)−0.0115 (13)−0.0398 (15)0.0560 (16)
O90.0673 (16)0.0399 (13)0.0631 (15)−0.0023 (11)−0.0020 (12)−0.0025 (11)
N10.0456 (15)0.0353 (14)0.0424 (15)0.0039 (11)0.0067 (12)0.0098 (11)
N20.0568 (17)0.0450 (16)0.0339 (14)0.0126 (13)0.0004 (12)0.0078 (12)
N30.0424 (14)0.0345 (14)0.0342 (14)0.0002 (11)0.0022 (11)0.0094 (11)
N40.0491 (15)0.0313 (13)0.0349 (14)0.0028 (11)−0.0014 (11)0.0107 (11)
C10.0440 (18)0.0347 (17)0.0459 (18)0.0096 (13)0.0160 (14)0.0098 (14)
C20.050 (2)0.0425 (19)0.056 (2)−0.0013 (15)−0.0033 (16)0.0076 (16)
C30.063 (2)0.053 (2)0.074 (3)−0.0076 (18)−0.009 (2)0.001 (2)
C40.057 (2)0.043 (2)0.101 (3)−0.0075 (17)0.008 (2)0.003 (2)
C50.050 (2)0.0363 (18)0.076 (2)0.0096 (15)0.0291 (18)0.0134 (17)
C60.065 (2)0.040 (2)0.091 (3)0.0085 (17)0.035 (2)0.020 (2)
C70.080 (3)0.039 (2)0.075 (3)0.0194 (18)0.048 (2)0.0287 (18)
C80.064 (2)0.054 (2)0.0438 (19)0.0303 (17)0.0265 (17)0.0215 (16)
C90.082 (3)0.062 (2)0.046 (2)0.033 (2)0.0245 (19)0.0241 (18)
C100.073 (3)0.082 (3)0.0352 (19)0.032 (2)−0.0012 (17)0.0129 (19)
C110.072 (2)0.052 (2)0.0368 (18)0.0181 (17)−0.0031 (17)0.0065 (15)
C120.0542 (19)0.0375 (17)0.0407 (18)0.0121 (14)0.0183 (15)0.0119 (14)
C130.0379 (16)0.0292 (15)0.0385 (17)−0.0043 (12)−0.0022 (13)0.0119 (13)
C140.052 (2)0.051 (2)0.0358 (18)0.0010 (15)0.0057 (14)0.0111 (15)
C150.055 (2)0.064 (2)0.0380 (18)−0.0036 (17)0.0037 (15)0.0222 (16)
C160.0443 (18)0.0462 (19)0.0455 (19)−0.0021 (15)−0.0034 (15)0.0257 (15)
C170.0410 (17)0.0363 (17)0.0443 (18)−0.0039 (13)−0.0013 (14)0.0167 (14)
C180.0481 (19)0.0383 (18)0.061 (2)0.0087 (15)−0.0043 (16)0.0209 (16)
C190.0480 (19)0.0457 (19)0.060 (2)0.0142 (15)0.0047 (16)0.0141 (17)
C200.0421 (17)0.0362 (17)0.0460 (19)0.0029 (13)0.0036 (14)0.0081 (14)
C210.057 (2)0.050 (2)0.0433 (19)0.0054 (16)0.0079 (16)0.0026 (16)
C220.067 (2)0.053 (2)0.0340 (17)0.0019 (17)0.0070 (16)0.0054 (15)
C230.060 (2)0.0423 (18)0.0330 (17)0.0031 (15)−0.0010 (15)0.0106 (14)
C240.0413 (17)0.0303 (15)0.0359 (16)−0.0041 (13)−0.0017 (13)0.0083 (13)
C250.0376 (16)0.0366 (16)0.0329 (16)0.0030 (12)−0.0010 (12)0.0110 (13)
C260.0288 (14)0.0365 (16)0.0300 (15)0.0019 (12)0.0023 (12)0.0103 (12)
C270.0328 (15)0.0403 (17)0.0346 (16)−0.0023 (12)0.0000 (12)0.0135 (13)
C280.0462 (19)0.0463 (19)0.052 (2)−0.0137 (15)−0.0117 (15)0.0193 (16)
C290.0443 (19)0.067 (2)0.053 (2)−0.0188 (16)−0.0200 (16)0.0197 (18)
C300.0352 (17)0.055 (2)0.0425 (18)−0.0031 (14)−0.0078 (14)0.0216 (15)
C310.0312 (15)0.0426 (17)0.0361 (16)0.0005 (12)0.0013 (12)0.0142 (13)
C320.0374 (16)0.0435 (18)0.0420 (17)0.0010 (13)−0.0030 (14)0.0207 (14)
C330.0372 (16)0.0306 (15)0.0297 (15)0.0062 (12)0.0031 (12)0.0061 (12)
C340.0412 (17)0.0287 (15)0.0331 (16)0.0018 (12)0.0030 (13)0.0051 (12)
S20.0494 (5)0.0337 (4)0.0392 (4)0.0050 (3)0.0030 (3)0.0133 (3)
C360.056 (2)0.0315 (16)0.0402 (17)−0.0077 (14)0.0010 (15)0.0055 (13)
C370.058 (2)0.0389 (18)0.0350 (17)−0.0071 (15)−0.0050 (15)0.0004 (14)
C380.0498 (18)0.0385 (17)0.0309 (16)0.0007 (14)−0.0022 (13)0.0062 (13)
C390.0400 (16)0.0330 (15)0.0281 (15)0.0039 (12)0.0038 (12)0.0068 (12)

Geometric parameters (Å, °)

Ni1—O92.051 (2)C11—H110.9300
Ni1—N32.066 (2)C13—C171.410 (4)
Ni1—N12.074 (2)C13—C241.431 (4)
Ni1—N22.077 (2)C14—C151.399 (4)
Ni1—N42.086 (3)C14—H140.9300
Ni1—O12.145 (2)C15—C161.354 (5)
S1—O21.431 (2)C15—H150.9300
S1—O31.458 (2)C16—C171.404 (4)
S1—O11.472 (2)C16—H160.9300
S1—C271.804 (3)C17—C181.427 (5)
O4—S21.432 (2)C18—C191.355 (4)
O5—S21.449 (2)C18—H180.9300
O6—S21.436 (2)C19—C201.439 (4)
O7—C251.212 (3)C19—H190.9300
O8—C321.209 (3)C20—C241.400 (4)
O9—H9A0.8501C20—C211.406 (4)
O9—H9B0.8501C21—C221.369 (4)
N1—C21.326 (4)C21—H210.9300
N1—C11.359 (3)C22—C231.388 (5)
N2—C111.326 (4)C22—H220.9300
N2—C121.356 (4)C23—H230.9300
N3—C141.331 (4)C25—C261.484 (4)
N3—C131.349 (4)C25—C391.494 (4)
N4—C231.330 (4)C26—C311.406 (3)
N4—C241.367 (3)C26—C271.414 (4)
C1—C51.404 (4)C27—C281.384 (4)
C1—C121.425 (4)C28—C291.375 (4)
C2—C31.383 (5)C28—H280.9300
C2—H20.9300C29—C301.374 (4)
C3—C41.348 (5)C29—H290.9300
C3—H30.9300C30—C311.381 (4)
C4—C51.392 (5)C30—H300.9300
C4—H40.9300C31—C321.506 (4)
C5—C61.421 (5)C32—C331.477 (4)
C6—C71.335 (5)C33—C391.404 (3)
C6—H60.9300C33—C341.411 (4)
C7—C81.428 (5)C34—C361.380 (4)
C7—H70.9300C34—S21.813 (3)
C8—C91.390 (5)C36—C371.379 (4)
C8—C121.405 (4)C36—H360.9300
C9—C101.355 (5)C37—C381.377 (4)
C9—H90.9300C37—H370.9300
C10—C111.407 (4)C38—C391.389 (4)
C10—H100.9300C38—H380.9300
O9—Ni1—N396.61 (9)C16—C15—C14120.0 (3)
O9—Ni1—N1170.98 (9)C16—C15—H15120.0
N3—Ni1—N192.15 (9)C14—C15—H15120.0
O9—Ni1—N291.57 (10)C15—C16—C17119.5 (3)
N3—Ni1—N2171.08 (10)C15—C16—H16120.2
N1—Ni1—N279.83 (10)C17—C16—H16120.2
O9—Ni1—N487.47 (10)C16—C17—C13117.0 (3)
N3—Ni1—N480.16 (9)C16—C17—C18124.2 (3)
N1—Ni1—N496.19 (10)C13—C17—C18118.9 (3)
N2—Ni1—N496.71 (9)C19—C18—C17121.7 (3)
O9—Ni1—O190.17 (9)C19—C18—H18119.2
N3—Ni1—O191.38 (9)C17—C18—H18119.2
N1—Ni1—O187.44 (9)C18—C19—C20120.4 (3)
N2—Ni1—O192.15 (9)C18—C19—H19119.8
N4—Ni1—O1170.88 (8)C20—C19—H19119.8
O2—S1—O3112.60 (13)C24—C20—C21117.7 (3)
O2—S1—O1113.95 (12)C24—C20—C19119.0 (3)
O3—S1—O1110.91 (13)C21—C20—C19123.3 (3)
O2—S1—C27109.11 (13)C22—C21—C20119.1 (3)
O3—S1—C27104.16 (13)C22—C21—H21120.5
O1—S1—C27105.37 (12)C20—C21—H21120.5
S1—O1—Ni1133.04 (12)C21—C22—C23119.7 (3)
Ni1—O9—H9A105.1C21—C22—H22120.1
Ni1—O9—H9B114.9C23—C22—H22120.1
H9A—O9—H9B117.0N4—C23—C22123.1 (3)
C2—N1—C1117.4 (3)N4—C23—H23118.5
C2—N1—Ni1129.7 (2)C22—C23—H23118.5
C1—N1—Ni1112.88 (19)N4—C24—C20122.7 (3)
C11—N2—C12117.8 (3)N4—C24—C13116.9 (3)
C11—N2—Ni1129.2 (2)C20—C24—C13120.4 (3)
C12—N2—Ni1112.95 (19)O7—C25—C26121.8 (2)
C14—N3—C13118.3 (3)O7—C25—C39119.5 (2)
C14—N3—Ni1128.4 (2)C26—C25—C39118.7 (2)
C13—N3—Ni1113.18 (18)C31—C26—C27118.5 (2)
C23—N4—C24117.6 (3)C31—C26—C25117.3 (2)
C23—N4—Ni1130.2 (2)C27—C26—C25124.1 (2)
C24—N4—Ni1112.18 (19)C28—C27—C26118.9 (2)
N1—C1—C5122.7 (3)C28—C27—S1115.7 (2)
N1—C1—C12117.1 (3)C26—C27—S1125.4 (2)
C5—C1—C12120.2 (3)C29—C28—C27121.7 (3)
N1—C2—C3122.9 (3)C29—C28—H28119.1
N1—C2—H2118.5C27—C28—H28119.1
C3—C2—H2118.5C30—C29—C28120.0 (3)
C4—C3—C2120.0 (3)C30—C29—H29120.0
C4—C3—H3120.0C28—C29—H29120.0
C2—C3—H3120.0C29—C30—C31120.0 (3)
C3—C4—C5119.6 (3)C29—C30—H30120.0
C3—C4—H4120.2C31—C30—H30120.0
C5—C4—H4120.2C30—C31—C26120.9 (3)
C4—C5—C1117.3 (3)C30—C31—C32117.6 (2)
C4—C5—C6123.7 (3)C26—C31—C32121.5 (2)
C1—C5—C6118.9 (3)O8—C32—C33122.7 (3)
C7—C6—C5120.9 (3)O8—C32—C31118.8 (3)
C7—C6—H6119.5C33—C32—C31118.5 (2)
C5—C6—H6119.5C39—C33—C34119.0 (2)
C6—C7—C8122.0 (3)C39—C33—C32117.1 (2)
C6—C7—H7119.0C34—C33—C32123.8 (2)
C8—C7—H7119.0C36—C34—C33118.5 (2)
C9—C8—C12116.6 (3)C36—C34—S2116.2 (2)
C9—C8—C7125.0 (3)C33—C34—S2124.8 (2)
C12—C8—C7118.5 (3)O4—S2—O6115.06 (15)
C10—C9—C8120.7 (3)O4—S2—O5113.50 (16)
C10—C9—H9119.7O6—S2—O5109.79 (15)
C8—C9—H9119.7O4—S2—C34105.34 (13)
C9—C10—C11119.1 (3)O6—S2—C34108.66 (14)
C9—C10—H10120.5O5—S2—C34103.64 (13)
C11—C10—H10120.5C37—C36—C34122.2 (3)
N2—C11—C10122.3 (3)C37—C36—H36118.9
N2—C11—H11118.8C34—C36—H36118.9
C10—C11—H11118.8C38—C37—C36119.8 (3)
N2—C12—C8123.4 (3)C38—C37—H37120.1
N2—C12—C1117.1 (2)C36—C37—H37120.1
C8—C12—C1119.5 (3)C37—C38—C39119.6 (3)
N3—C13—C17122.9 (3)C37—C38—H38120.2
N3—C13—C24117.5 (2)C39—C38—H38120.2
C17—C13—C24119.5 (3)C38—C39—C33120.8 (2)
N3—C14—C15122.1 (3)C38—C39—C25117.1 (2)
N3—C14—H14118.9C33—C39—C25122.0 (2)
C15—C14—H14118.9
O2—S1—O1—Ni1162.23 (13)C13—N3—C14—C15−0.3 (4)
O3—S1—O1—Ni133.92 (19)Ni1—N3—C14—C15−175.3 (2)
C27—S1—O1—Ni1−78.20 (17)N3—C14—C15—C16−2.1 (5)
O9—Ni1—O1—S1−16.47 (16)C14—C15—C16—C171.8 (5)
N3—Ni1—O1—S1−113.08 (16)C15—C16—C17—C130.7 (4)
N1—Ni1—O1—S1154.83 (16)C15—C16—C17—C18−178.7 (3)
N2—Ni1—O1—S175.11 (16)N3—C13—C17—C16−3.3 (4)
N4—Ni1—O1—S1−91.4 (5)C24—C13—C17—C16176.5 (3)
O9—Ni1—N1—C2163.0 (6)N3—C13—C17—C18176.2 (3)
N3—Ni1—N1—C2−3.1 (3)C24—C13—C17—C18−4.0 (4)
N2—Ni1—N1—C2−179.2 (3)C16—C17—C18—C19−177.4 (3)
N4—Ni1—N1—C2−83.4 (3)C13—C17—C18—C193.2 (4)
O1—Ni1—N1—C288.2 (3)C17—C18—C19—C200.0 (5)
O9—Ni1—N1—C1−15.1 (7)C18—C19—C20—C24−2.3 (5)
N3—Ni1—N1—C1178.8 (2)C18—C19—C20—C21177.3 (3)
N2—Ni1—N1—C12.8 (2)C24—C20—C21—C22−0.4 (5)
N4—Ni1—N1—C198.5 (2)C19—C20—C21—C22179.9 (3)
O1—Ni1—N1—C1−89.9 (2)C20—C21—C22—C23−0.5 (5)
O9—Ni1—N2—C11−3.0 (3)C24—N4—C23—C22−1.7 (4)
N3—Ni1—N2—C11153.5 (6)Ni1—N4—C23—C22−178.6 (2)
N1—Ni1—N2—C11179.8 (3)C21—C22—C23—N41.6 (5)
N4—Ni1—N2—C1184.6 (3)C23—N4—C24—C200.7 (4)
O1—Ni1—N2—C11−93.2 (3)Ni1—N4—C24—C20178.1 (2)
O9—Ni1—N2—C12174.7 (2)C23—N4—C24—C13179.3 (2)
N3—Ni1—N2—C12−28.8 (7)Ni1—N4—C24—C13−3.2 (3)
N1—Ni1—N2—C12−2.6 (2)C21—C20—C24—N40.4 (4)
N4—Ni1—N2—C12−97.7 (2)C19—C20—C24—N4180.0 (3)
O1—Ni1—N2—C1284.4 (2)C21—C20—C24—C13−178.2 (3)
O9—Ni1—N3—C14−99.1 (3)C19—C20—C24—C131.4 (4)
N1—Ni1—N3—C1478.7 (3)N3—C13—C24—N42.9 (4)
N2—Ni1—N3—C14104.6 (7)C17—C13—C24—N4−176.9 (2)
N4—Ni1—N3—C14174.6 (3)N3—C13—C24—C20−178.4 (3)
O1—Ni1—N3—C14−8.8 (2)C17—C13—C24—C201.8 (4)
O9—Ni1—N3—C1385.70 (19)O7—C25—C26—C31161.8 (3)
N1—Ni1—N3—C13−96.47 (19)C39—C25—C26—C31−18.4 (4)
N2—Ni1—N3—C13−70.6 (7)O7—C25—C26—C27−13.5 (5)
N4—Ni1—N3—C13−0.56 (18)C39—C25—C26—C27166.2 (3)
O1—Ni1—N3—C13176.04 (18)C31—C26—C27—C28−1.8 (4)
O9—Ni1—N4—C2381.9 (3)C25—C26—C27—C28173.5 (3)
N3—Ni1—N4—C23179.1 (3)C31—C26—C27—S1175.3 (2)
N1—Ni1—N4—C23−89.8 (3)C25—C26—C27—S1−9.4 (4)
N2—Ni1—N4—C23−9.4 (3)O2—S1—C27—C28−111.8 (3)
O1—Ni1—N4—C23157.1 (4)O3—S1—C27—C288.6 (3)
O9—Ni1—N4—C24−95.10 (19)O1—S1—C27—C28125.4 (2)
N3—Ni1—N4—C242.06 (18)O2—S1—C27—C2671.0 (3)
N1—Ni1—N4—C2493.17 (19)O3—S1—C27—C26−168.6 (3)
N2—Ni1—N4—C24173.62 (18)O1—S1—C27—C26−51.8 (3)
O1—Ni1—N4—C24−20.0 (6)C26—C27—C28—C290.3 (5)
C2—N1—C1—C5−0.8 (5)S1—C27—C28—C29−177.1 (3)
Ni1—N1—C1—C5177.5 (2)C27—C28—C29—C301.2 (6)
C2—N1—C1—C12179.1 (3)C28—C29—C30—C31−1.1 (5)
Ni1—N1—C1—C12−2.6 (3)C29—C30—C31—C26−0.4 (5)
C1—N1—C2—C31.3 (5)C29—C30—C31—C32−179.7 (3)
Ni1—N1—C2—C3−176.7 (3)C27—C26—C31—C301.9 (4)
N1—C2—C3—C4−0.1 (6)C25—C26—C31—C30−173.7 (3)
C2—C3—C4—C5−1.7 (6)C27—C26—C31—C32−178.9 (3)
C3—C4—C5—C12.1 (6)C25—C26—C31—C325.5 (4)
C3—C4—C5—C6−177.9 (4)C30—C31—C32—O815.4 (5)
N1—C1—C5—C4−0.9 (5)C26—C31—C32—O8−163.9 (3)
C12—C1—C5—C4179.2 (3)C30—C31—C32—C33−166.1 (3)
N1—C1—C5—C6179.1 (3)C26—C31—C32—C3314.7 (4)
C12—C1—C5—C6−0.8 (5)O8—C32—C33—C39157.1 (3)
C4—C5—C6—C7−178.5 (4)C31—C32—C33—C39−21.4 (4)
C1—C5—C6—C71.5 (5)O8—C32—C33—C34−19.8 (5)
C5—C6—C7—C8−0.8 (5)C31—C32—C33—C34161.8 (3)
C6—C7—C8—C9178.6 (3)C39—C33—C34—C36−3.0 (4)
C6—C7—C8—C12−0.6 (5)C32—C33—C34—C36173.8 (3)
C12—C8—C9—C10−2.4 (5)C39—C33—C34—S2168.3 (2)
C7—C8—C9—C10178.3 (3)C32—C33—C34—S2−14.9 (4)
C8—C9—C10—C111.9 (5)C36—C34—S2—O4124.0 (3)
C12—N2—C11—C10−1.5 (5)C33—C34—S2—O4−47.4 (3)
Ni1—N2—C11—C10176.1 (2)C36—C34—S2—O6−112.2 (3)
C9—C10—C11—N20.1 (6)C33—C34—S2—O676.3 (3)
C11—N2—C12—C80.9 (5)C36—C34—S2—O54.5 (3)
Ni1—N2—C12—C8−177.1 (2)C33—C34—S2—O5−166.9 (3)
C11—N2—C12—C1180.0 (3)C33—C34—C36—C370.6 (5)
Ni1—N2—C12—C12.0 (3)S2—C34—C36—C37−171.4 (3)
C9—C8—C12—N21.0 (5)C34—C36—C37—C381.8 (5)
C7—C8—C12—N2−179.7 (3)C36—C37—C38—C39−1.7 (5)
C9—C8—C12—C1−178.0 (3)C37—C38—C39—C33−0.7 (5)
C7—C8—C12—C11.3 (4)C37—C38—C39—C25176.9 (3)
N1—C1—C12—N20.4 (4)C34—C33—C39—C383.1 (4)
C5—C1—C12—N2−179.7 (3)C32—C33—C39—C38−173.9 (3)
N1—C1—C12—C8179.5 (3)C34—C33—C39—C25−174.4 (3)
C5—C1—C12—C8−0.6 (5)C32—C33—C39—C258.5 (4)
C14—N3—C13—C173.1 (4)O7—C25—C39—C3813.8 (4)
Ni1—N3—C13—C17178.8 (2)C26—C25—C39—C38−166.0 (3)
C14—N3—C13—C24−176.8 (2)O7—C25—C39—C33−168.6 (3)
Ni1—N3—C13—C24−1.0 (3)C26—C25—C39—C3311.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O9—H9A···O30.851.902.704 (3)156
O9—H9B···O5i0.851.972.823 (3)179

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5331).

References

  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany..
  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, C.-H., Cai, J.-W., Liao, C.-Z., Feng, X.-L., Chen, X.-M. & Ng, S.-W. (2002). Inorg. Chem.41, 4967–4974. [PubMed]
  • Cui, Z.-N., Guo, J.-H. & Yang, E.-C. (2007). Chin. J. Struct. Chem.26, 717–720.
  • Dai, P.-X., Guo, J.-H. & Yang, E.-C. (2006). Acta Cryst. E62, m2096–m2098.
  • Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl.32, 1584–1586.
  • Jia, J., Feng, W., Zhao, H.-K. & Yang, E.-C. (2009). Acta Cryst. E65, m695–m696. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, E.-C., Dai, P.-X., Wang, X.-G., Ding, B. & Zhao, X.-J. (2007). Z. Anorg. Allg. Chem.633, 615–620.
  • Zhao, J.-P., Hu, B.-W., Liu, F.-C., Hu, X., Zeng, Y.-F. & Bu, X.-H. (2007). CrystEngComm, 9, 902–906.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography