PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): m1290.
Published online 2010 September 25. doi:  10.1107/S1600536810036202
PMCID: PMC2983159

Bis[2-(4-benzo­yloxy-2-hy­droxy­benzo­yl)-1-phenyl­ethenolato]diethano­lzinc(II)

Abstract

The mononuclear title complex, [Zn(C22H15O5)2(C2H5OH)2], contains a ZnII atom (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-66-m1290-efi1.jpg) surrounded by six O atoms of the keto groups of two substituted 1,3-diketonate ligands and of two ethanol mol­ecules, resulting in a distorted octa­hedral coordination environment. The mol­ecular configuration is stabilized by an intra­molecular hydrogen bond between the phenolic hy­droxy group and the adjacent keto group. The hy­droxy group acts likewise as an acceptor of an inter­molecular O—H(...)O hydrogen bond with the hy­droxy group of the ethanol mol­ecule as the donor. The hydrogen-bonding scheme leads to the formation of supra­molecular layers parallel to (010).

Related literature

For the role of zinc in enzymes and in bioinorganic chemistry, see: Bertini et al. (1994 [triangle]); Lipscomb & Strater (1996 [triangle]); Vallee & Auld (1993 [triangle]); Zhu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-m1290-scheme1.jpg

Experimental

Crystal data

  • [Zn(C22H15O5)2(C2H6O)2]
  • M r = 876.19
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-m1290-efi2.jpg
  • a = 7.170 (5) Å
  • b = 9.399 (5) Å
  • c = 16.457 (5) Å
  • α = 106.590 (5)°
  • β = 95.596 (5)°
  • γ = 90.989 (5)°
  • V = 1056.6 (10) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.65 mm−1
  • T = 298 K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.830, T max = 0.882
  • 6185 measured reflections
  • 4255 independent reflections
  • 2898 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.142
  • S = 1.02
  • 4255 reflections
  • 279 parameters
  • 14 restraints
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810036202/wm2402sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810036202/wm2402Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was financed by a grant (project 30772627) from the National Natural Science Foundation of China.

supplementary crystallographic information

Comment

Zinc, the second most abundant transition metal in biology, functions as the active site of hydrolytic enzymes, such as carboxypeptidase and carbonic anhydrase, where it is in a hard donor coordination environment of nitrogen and oxygen (Lipscomb & Strater, 1996; Bertini et al., 1994). Zinc has long been recognized as an important cofactor in biological molecules, either as a structural template in protein folding or as a Lewis acid catalyst that can readily adopt 4-, 5- or 6-coordination (Vallee & Auld, 1993). Studies of the structures and properties of the metal coordination sites in in zinc enzymes recently were in focus in the field of bioinorganic chemistry (Zhu et al., 2003). A couple of chemical systems have been developed to reproduce the zinc coordination core. On our continuation of the research in this field, the crystal structure of a mononuclear zinc(II) compound, (I), is reported here.

In the structure of (I), the ZnII atom is situated on an inversion center and adopts a slightly distorted octahedral coordination (Fig. 1). It is surrounded by six O atoms from the keto groups of two 1,3-diketonate ligands and by two ethanol molecules. The ZnII atom and the four O atoms from the diketone ligands form the equatorial plane with similar Zn—O bond lengths of 2.002 (2) and 2.034 (2) Å. The two ethanol O atoms are in the axial positions with considerably longer Zn—O bond lengths of 2.203 (3) Å (Table 1). The two trans-angles at the zinc(II) center are 180° by symmetry; all angles around Zn1 are close to 90°, ranging from 85.93 (11) to 94.07 (11)°. In the crystal structure, intramolecular and intermolecular O—H···O hydrogen bonding leads to a layered assembly parallel to (010) (Table 2; Fig. 2).

Experimental

To a ethanol solution (15 ml) of 3-hydroxy-4-(3-oxo-3-phenylpropanoyl)phenyl benzoic acid (0.36 g, 0.001mol), anhydrous zinc acetate (0.092 g, 0.0005 mol) was added at room temperature. After addition, the reaction mixture was refluxed for 30 min with stirring and then was filtered. Single crystals of the title compound were obtained by slow evaporation of the filtrate.

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93, 0.96(–CH3), 0.97 (–CH2), 0.86 (–OH) Å, Uiso(H) = 1.2 Ueq (C or –OH), 1.5 Ueq (–CH3), respectively.

Figures

Fig. 1.
The structure and atom-numbering scheme of the title compound (I), showing 30% probability displacement ellipsoids. [Symmetry code: (A) -x, -y+1, -z+1.]
Fig. 2.
The crystal packing of the title compound viewed along the b axis. Hydrogen bonding interactions are indicated by dashed lines.

Crystal data

[Zn(C22H15O5)2(C2H6O)2]Z = 1
Mr = 876.19F(000) = 456
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.170 (5) ÅCell parameters from 2800 reflections
b = 9.399 (5) Åθ = 2.5–26.2°
c = 16.457 (5) ŵ = 0.65 mm1
α = 106.590 (5)°T = 298 K
β = 95.596 (5)°Block, colourless
γ = 90.989 (5)°0.30 × 0.20 × 0.20 mm
V = 1056.6 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4255 independent reflections
Radiation source: fine-focus sealed tube2898 reflections with I > 2σ(I)
graphiteRint = 0.017
[var phi] and ω scansθmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→8
Tmin = 0.830, Tmax = 0.882k = −11→11
6185 measured reflectionsl = −18→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0597P)2 + 0.7172P] where P = (Fo2 + 2Fc2)/3
4255 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.80 e Å3
14 restraintsΔρmin = −0.49 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0307 (7)0.0321 (6)−0.1364 (3)0.0787 (14)
H11.1025−0.0287−0.17510.094*
C21.0779 (7)0.1805 (6)−0.1042 (3)0.0828 (14)
H21.18140.2205−0.12140.099*
C30.9730 (6)0.2707 (5)−0.0466 (3)0.0670 (11)
H3A1.00400.3720−0.02600.080*
C40.8221 (5)0.2120 (4)−0.0193 (2)0.0465 (8)
C50.7732 (5)0.0614 (4)−0.0524 (2)0.0572 (10)
H50.67080.0209−0.03470.069*
C60.8769 (7)−0.0277 (5)−0.1115 (3)0.0723 (12)
H60.8431−0.1283−0.13450.087*
C70.7210 (5)0.3140 (5)0.0470 (2)0.0522 (9)
C80.4913 (5)0.3187 (4)0.1426 (2)0.0533 (9)
C90.3464 (5)0.4014 (5)0.1234 (2)0.0625 (11)
H90.32870.41790.07010.075*
C100.2282 (5)0.4591 (4)0.1841 (2)0.0560 (10)
H100.12900.51370.17070.067*
C110.2513 (4)0.4390 (4)0.2655 (2)0.0417 (8)
C120.4069 (5)0.3582 (4)0.2832 (2)0.0462 (8)
C130.5241 (5)0.2980 (4)0.2214 (2)0.0539 (9)
H130.62470.24360.23360.065*
C140.1192 (4)0.4955 (4)0.3303 (2)0.0427 (8)
C15−0.0393 (5)0.5691 (4)0.3129 (2)0.0475 (8)
H15−0.05920.58040.25840.057*
C16−0.1725 (4)0.6280 (4)0.3689 (2)0.0409 (7)
C17−0.3308 (4)0.7128 (4)0.3413 (2)0.0425 (8)
C18−0.3685 (5)0.7198 (5)0.2587 (2)0.0648 (11)
H18−0.29690.66720.21690.078*
C19−0.5106 (6)0.8032 (6)0.2374 (3)0.0817 (14)
H19−0.53290.80710.18150.098*
C20−0.6184 (6)0.8797 (6)0.2966 (3)0.0816 (14)
H20−0.71080.93940.28240.098*
C21−0.5890 (7)0.8675 (6)0.3773 (3)0.0971 (18)
H21−0.66600.91580.41790.117*
C22−0.4472 (6)0.7849 (5)0.3996 (3)0.0749 (13)
H22−0.42990.77780.45510.090*
C230.1763 (9)0.8386 (7)0.5795 (5)0.132 (2)
H23A0.19460.84770.52360.159*
H23B0.28500.88790.61760.159*
C240.0214 (9)0.9216 (7)0.6062 (5)0.129 (2)
H24A−0.08900.87800.56890.193*
H24B0.04261.02180.60460.193*
H24C0.00440.92170.66340.193*
O10.7452 (5)0.4469 (3)0.0716 (2)0.0838 (10)
O20.5993 (4)0.2389 (3)0.07885 (17)0.0653 (7)
O30.4461 (4)0.3341 (4)0.36033 (16)0.0670 (8)
H30.36720.37220.39170.100*
O40.1634 (3)0.4709 (3)0.40277 (15)0.0600 (7)
O5−0.1712 (3)0.6190 (3)0.44437 (14)0.0547 (7)
O60.1818 (4)0.6942 (3)0.5742 (2)0.0773 (9)
H10A0.27350.67290.60570.093*
Zn10.00000.50000.50000.0548 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.084 (3)0.097 (4)0.057 (3)0.036 (3)0.033 (2)0.014 (3)
C20.083 (3)0.093 (4)0.089 (3)0.017 (3)0.055 (3)0.035 (3)
C30.068 (3)0.065 (3)0.077 (3)0.008 (2)0.033 (2)0.026 (2)
C40.0436 (19)0.058 (2)0.0402 (18)0.0108 (17)0.0117 (15)0.0155 (17)
C50.051 (2)0.063 (3)0.057 (2)0.0030 (19)0.0140 (18)0.0138 (19)
C60.078 (3)0.066 (3)0.063 (3)0.013 (2)0.014 (2)0.002 (2)
C70.045 (2)0.061 (3)0.053 (2)0.0063 (18)0.0159 (16)0.0166 (19)
C80.049 (2)0.057 (2)0.055 (2)0.0120 (18)0.0262 (17)0.0105 (18)
C90.061 (2)0.087 (3)0.049 (2)0.019 (2)0.0232 (18)0.027 (2)
C100.049 (2)0.076 (3)0.052 (2)0.0238 (19)0.0175 (16)0.0276 (19)
C110.0332 (17)0.050 (2)0.0443 (18)0.0100 (14)0.0108 (13)0.0142 (15)
C120.0352 (17)0.059 (2)0.0461 (19)0.0112 (16)0.0106 (14)0.0148 (17)
C130.0413 (19)0.062 (2)0.060 (2)0.0182 (17)0.0158 (16)0.0157 (19)
C140.0331 (17)0.056 (2)0.0419 (18)0.0105 (15)0.0102 (13)0.0158 (16)
C150.0419 (19)0.066 (2)0.0399 (18)0.0205 (17)0.0128 (14)0.0207 (17)
C160.0343 (17)0.051 (2)0.0398 (18)0.0085 (15)0.0068 (13)0.0150 (15)
C170.0362 (17)0.050 (2)0.0434 (18)0.0107 (15)0.0061 (14)0.0152 (15)
C180.058 (2)0.096 (3)0.053 (2)0.033 (2)0.0175 (18)0.037 (2)
C190.075 (3)0.121 (4)0.066 (3)0.046 (3)0.010 (2)0.050 (3)
C200.068 (3)0.105 (4)0.082 (3)0.049 (3)0.008 (2)0.041 (3)
C210.088 (3)0.139 (5)0.073 (3)0.078 (3)0.027 (3)0.034 (3)
C220.072 (3)0.111 (4)0.051 (2)0.054 (3)0.019 (2)0.030 (2)
C230.112 (4)0.086 (2)0.197 (5)0.020 (3)−0.007 (4)0.044 (3)
C240.114 (4)0.110 (4)0.147 (4)0.040 (3)0.014 (3)0.009 (3)
O10.092 (2)0.0581 (19)0.098 (2)0.0027 (17)0.0523 (19)0.0045 (17)
O20.0656 (17)0.0624 (17)0.0721 (18)0.0123 (14)0.0423 (14)0.0140 (14)
O30.0497 (15)0.107 (2)0.0525 (15)0.0400 (15)0.0158 (12)0.0316 (16)
O40.0456 (14)0.100 (2)0.0461 (14)0.0360 (14)0.0165 (11)0.0350 (14)
O50.0496 (14)0.0804 (18)0.0429 (13)0.0331 (13)0.0165 (11)0.0264 (13)
O60.0566 (17)0.0793 (18)0.092 (2)0.0247 (15)−0.0049 (15)0.0215 (17)
Zn10.0475 (4)0.0847 (5)0.0425 (3)0.0331 (3)0.0159 (3)0.0296 (3)

Geometric parameters (Å, °)

C1—C21.366 (7)C15—H150.9300
C1—C61.378 (6)C16—O51.269 (4)
C1—H10.9300C16—C171.506 (4)
C2—C31.373 (6)C17—C221.372 (5)
C2—H20.9300C17—C181.379 (5)
C3—C41.375 (5)C18—C191.375 (5)
C3—H3A0.9300C18—H180.9300
C4—C51.389 (5)C19—C201.352 (6)
C4—C71.489 (5)C19—H190.9300
C5—C61.377 (5)C20—C211.363 (6)
C5—H50.9300C20—H200.9300
C6—H60.9300C21—C221.374 (5)
C7—O11.202 (4)C21—H210.9300
C7—O21.346 (4)C22—H220.9300
C8—C131.365 (5)C23—O61.337 (6)
C8—C91.374 (5)C23—C241.402 (6)
C8—O21.411 (4)C23—H23A0.9700
C9—C101.372 (5)C23—H23B0.9700
C9—H90.9300C24—H24A0.9600
C10—C111.400 (5)C24—H24B0.9600
C10—H100.9300C24—H24C0.9600
C11—C121.414 (4)O3—H30.8200
C11—C141.486 (4)O4—Zn12.034 (2)
C12—O31.356 (4)O5—Zn12.002 (2)
C12—C131.383 (5)O6—Zn12.203 (3)
C13—H130.9300O6—H10A0.8600
C14—O41.289 (4)Zn1—O5i2.002 (2)
C14—C151.389 (4)Zn1—O4i2.034 (2)
C15—C161.402 (4)Zn1—O6i2.203 (3)
C2—C1—C6120.2 (4)C18—C17—C16123.2 (3)
C2—C1—H1119.9C19—C18—C17120.9 (4)
C6—C1—H1119.9C19—C18—H18119.5
C1—C2—C3120.2 (4)C17—C18—H18119.5
C1—C2—H2119.9C20—C19—C18121.0 (4)
C3—C2—H2119.9C20—C19—H19119.5
C2—C3—C4120.4 (4)C18—C19—H19119.5
C2—C3—H3A119.8C19—C20—C21118.7 (4)
C4—C3—H3A119.8C19—C20—H20120.7
C3—C4—C5119.4 (3)C21—C20—H20120.7
C3—C4—C7117.8 (3)C20—C21—C22121.0 (4)
C5—C4—C7122.8 (3)C20—C21—H21119.5
C6—C5—C4119.8 (4)C22—C21—H21119.5
C6—C5—H5120.1C17—C22—C21120.9 (4)
C4—C5—H5120.1C17—C22—H22119.6
C5—C6—C1119.9 (4)C21—C22—H22119.6
C5—C6—H6120.0O6—C23—C24121.8 (6)
C1—C6—H6120.0O6—C23—H23A106.9
O1—C7—O2122.9 (3)C24—C23—H23A106.9
O1—C7—C4125.4 (3)O6—C23—H23B106.9
O2—C7—C4111.7 (3)C24—C23—H23B106.9
C13—C8—C9121.4 (3)H23A—C23—H23B106.7
C13—C8—O2117.3 (3)C23—C24—H24A109.5
C9—C8—O2121.0 (3)C23—C24—H24B109.5
C10—C9—C8118.9 (3)H24A—C24—H24B109.5
C10—C9—H9120.6C23—C24—H24C109.5
C8—C9—H9120.6H24A—C24—H24C109.5
C9—C10—C11122.5 (3)H24B—C24—H24C109.5
C9—C10—H10118.7C7—O2—C8119.2 (3)
C11—C10—H10118.7C12—O3—H3109.5
C10—C11—C12116.4 (3)C14—O4—Zn1126.7 (2)
C10—C11—C14122.9 (3)C16—O5—Zn1126.6 (2)
C12—C11—C14120.7 (3)C23—O6—Zn1132.2 (4)
O3—C12—C13117.2 (3)C23—O6—H10A114.0
O3—C12—C11121.8 (3)Zn1—O6—H10A113.8
C13—C12—C11121.0 (3)O5—Zn1—O5i180.00 (11)
C8—C13—C12119.7 (3)O5—Zn1—O489.37 (9)
C8—C13—H13120.1O5i—Zn1—O490.63 (9)
C12—C13—H13120.1O5—Zn1—O4i90.63 (9)
O4—C14—C15123.3 (3)O5i—Zn1—O4i89.37 (9)
O4—C14—C11115.0 (3)O4—Zn1—O4i179.999 (1)
C15—C14—C11121.7 (3)O5—Zn1—O694.07 (11)
C14—C15—C16126.8 (3)O5i—Zn1—O685.93 (11)
C14—C15—H15116.6O4—Zn1—O689.52 (12)
C16—C15—H15116.6O4i—Zn1—O690.48 (12)
O5—C16—C15125.3 (3)O5—Zn1—O6i85.93 (11)
O5—C16—C17114.8 (3)O5i—Zn1—O6i94.07 (11)
C15—C16—C17119.9 (3)O4—Zn1—O6i90.48 (12)
C22—C17—C18117.4 (3)O4i—Zn1—O6i89.52 (12)
C22—C17—C16119.4 (3)O6—Zn1—O6i180.0

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.742.470 (3)147
O6—H10A···O3ii0.862.042.824 (4)151

Symmetry codes: (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2402).

References

  • Bertini, I., Gray, H. B., Lippard, S. J. & Valentine, J. S. (1994). Bioinorganic Chemistry Mills Valley, CA, USA: University Science Books.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lipscomb, W. N. & Strater, N. (1996). Chem. Rev 96, 2375–2434. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vallee, B. L. & Auld, D. S. (1993). Acc. Chem. Res 26, 543–551.
  • Zhu, H.-L., Meng, F.-J., Wang, Z.-D. & Yang, F. (2003). Z. Kristallogr. New Cryst. Struct.219, 321–322.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography