PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 October 1; 66(Pt 10): o2540.
Published online 2010 September 11. doi:  10.1107/S1600536810034677
PMCID: PMC2983156

1-(3-Bromo-2-thien­yl)ethanone

Abstract

In the title compound, C6H5BrOS, the non-H and aromatic H atoms lie on a crystallographic mirror plane. In the crystal, mol­ecules are linked into chains propagating along the c axis by inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the uses of acetyl thio­phenes, see: Ashalatha et al. (2009 [triangle]); Bando et al. (2010 [triangle]); Ito & Furukawa (1990 [triangle]); Lutz et al. (2005 [triangle]); Nakayama et al. (1989 [triangle]); Pelly et al. (2005 [triangle]); Yasuhara et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o2540-scheme1.jpg

Experimental

Crystal data

  • C6H5BrOS
  • M r = 205.07
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o2540-efi1.jpg
  • a = 6.8263 (17) Å
  • b = 13.149 (4) Å
  • c = 16.007 (4) Å
  • V = 1436.8 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.92 mm−1
  • T = 293 K
  • 0.25 × 0.21 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.313, T max = 0.384
  • 12363 measured reflections
  • 973 independent reflections
  • 790 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.067
  • S = 1.06
  • 973 reflections
  • 56 parameters
  • H-atom parameters constrained
  • Δρmax = 0.68 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]) and ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810034677/ci5166sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810034677/ci5166Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SNS is grateful to University Grants Commission (UGC), Government of India, for financial support under the major research project [grant No. 38–220/2009 (SR)]. SNS also expresses his sincere gratitude to J. S. S. Mahavidyapeetha for the encouragement towards this research work. MM thanks the University of Mysore for awarding a project (No. DV3/136/2007–2008/24.09.09).

supplementary crystallographic information

Comment

2-Acetyl-3-bromothiophene is one of the well-known bio-active intermediate used for the construction of number of new heterocycles (Lutz et al. 2005; Pelly et al. 2005). It is used as an intermediate for the synthesis of furo[3,2-a]carbazole alkaloid, furostifoline (Ito et al. 1990) and its derivatives, which show broad pharmacological properties (Yasuhara et al. 2002). Chalcones of 2-acetyl-3-bromothiophene exhibit promising anti-inflammatory, analgesic and antibacterial activities (Ashalatha et al. 2009). Acetyl thiophenes are useful as intermediates for preparing number of pharmaceutical compounds (Bando et al. 2010). Acetyl bromothiophenes are also used for the synthesis of number of biologically active pyridazine derivatives (Nakayama et al. 1989). With this background, the title compound (I), was synthesized and we report its crystal structure here.

The non-hydrogen and aromatic hydrogen atoms of the title molecule lie on a crystallographic mirror plane (Fig. 1). The molecules are linked into a chain along the c axis by intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

A three-necked, round-bottomed flask was charged with CH2Cl2 (10 ml) and anhydrous AlCl3 (2.45 g, 18.4 mmol). The flask was cooled to 273 K. A dropping funnel was charged with freshly distilled acetyl chloride (1.48 g, 19.6 mmol) in CH2Cl2 (15 ml), and was added drop wise for a period of 30 min. The reaction mixture was stirred for 1 h at 273 K. The reaction mass was further cooled to 250 K. 3-Bromothiophene (1.00 g, 6.13 mmol) in CH2Cl2 (15 mL) was added drop wise for 1 h. The reaction was stirred at 250 K for 30 min and then warmed slowly to room temperature and stirred for 1 h. Then the reaction mixture was quenched on ice water (50 ml). Layers were separated and aqueous layer was repeatedly extracted with CH2Cl2 and the combined organic extracts were washed with saturated NaHCO3 (25 ml), then brine (25 ml) and finally dried over anhydrous Na2SO4. Solvent was removed by distillation at atmospheric pressure. The remaining oily mass was distilled under high vacuum (403 K at 10 mbar) to give a pale yellow oil which was crystallized in n-hexane to give 2-acetyl-3-bromothiophene (1.10 g, 88 %) as a yellow solid. Block-shaped yellow single crystals were obtained by slow evaporation of an n-hexane solution.

Refinement

H atoms were placed at idealized positions and allowed to ride on their parent atoms with C–H distances in the range 0.93–0.96 Å and Uiso(H) = 1.2-1.5Ueq(carrier atom).

Figures

Fig. 1.
Molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
Packing diagram of (I), viewed down the a axis. The dashed lines represent hydrogen bonds.

Crystal data

C6H5BrOSF(000) = 800
Mr = 205.07Dx = 1.896 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 1982 reflections
a = 6.8263 (17) Åθ = 2.5–28.4°
b = 13.149 (4) ŵ = 5.92 mm1
c = 16.007 (4) ÅT = 293 K
V = 1436.8 (7) Å3Block, yellow
Z = 80.25 × 0.21 × 0.20 mm

Data collection

Bruker APEXII CCD area-detector diffractometer973 independent reflections
Radiation source: fine-focus sealed tube790 reflections with I > 2σ(I)
graphiteRint = 0.041
ω and [var phi] scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −9→9
Tmin = 0.313, Tmax = 0.384k = −17→17
12363 measured reflectionsl = −21→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0333P)2 + 1.3829P] where P = (Fo2 + 2Fc2)/3
973 reflections(Δ/σ)max = 0.001
56 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = −0.48 e Å3

Special details

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.000000.01659 (3)0.38478 (2)0.0547 (1)
S50.000000.33480 (6)0.30339 (5)0.0463 (3)
O80.000000.19098 (19)0.51639 (13)0.0584 (9)
C20.000000.1452 (2)0.33378 (18)0.0365 (9)
C30.000000.1547 (3)0.2458 (2)0.0448 (10)
C40.000000.2530 (3)0.2207 (2)0.0479 (10)
C60.000000.2366 (2)0.37465 (17)0.0357 (9)
C70.000000.2587 (2)0.46527 (19)0.0389 (9)
C90.000000.3685 (3)0.4922 (2)0.0541 (11)
H30.000000.099700.209300.0540*
H40.000000.273500.165100.0570*
H9A0.131400.394500.490600.0810*0.500
H9B−0.050100.373600.548100.0810*0.500
H9C−0.081300.407400.455100.0810*0.500

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0910 (3)0.0316 (2)0.0415 (2)0.00000.0000−0.0009 (1)
S50.0590 (5)0.0401 (4)0.0397 (4)0.00000.00000.0117 (3)
O80.106 (2)0.0408 (13)0.0285 (12)0.00000.00000.0023 (10)
C20.0400 (16)0.0399 (16)0.0297 (14)0.00000.00000.0021 (12)
C30.0512 (18)0.0519 (18)0.0314 (15)0.00000.0000−0.0035 (13)
C40.0526 (19)0.063 (2)0.0281 (14)0.00000.00000.0069 (14)
C60.0428 (16)0.0333 (14)0.0309 (15)0.00000.00000.0057 (11)
C70.0482 (17)0.0354 (15)0.0332 (15)0.00000.0000−0.0021 (12)
C90.079 (2)0.0385 (16)0.0448 (19)0.00000.0000−0.0061 (14)

Geometric parameters (Å, °)

Br1—C21.878 (3)C3—H30.93
S5—C41.706 (4)C4—H40.93
S5—C61.723 (3)C9—H9A0.96
O8—C71.209 (4)C9—H9B0.96
C2—C31.414 (4)C9—H9C0.96
C2—C61.368 (4)C9—H9Ai0.96
C3—C41.354 (6)C9—H9Bi0.96
C6—C71.479 (4)C9—H9Ci0.96
C7—C91.507 (5)
Br1···O83.114 (3)C3···C3xi3.4158 (11)
Br1···Br1ii3.7144 (12)C3···C3ix3.4158 (11)
Br1···O8ii3.155 (3)C3···C3vi3.4158 (11)
Br1···S5iii3.8453 (15)C4···O8xvi3.352 (4)
Br1···Br1iv3.7144 (12)C4···O8xvii3.352 (4)
Br1···O8iv3.155 (3)C4···S5x3.5993 (17)
Br1···S5v3.8453 (15)C4···S5xi3.5993 (17)
S5···C4vi3.5993 (17)C4···C4x3.5397 (16)
S5···Br1vii3.8453 (15)C4···C4xi3.5397 (16)
S5···Br1viii3.8453 (15)C4···S5ix3.5993 (17)
S5···C4ix3.5993 (17)C4···S5vi3.5993 (17)
S5···C4x3.5993 (17)C4···C4ix3.5397 (16)
S5···C4xi3.5993 (17)C4···C4vi3.5397 (16)
S5···H9Ci2.6700C7···C7xiv3.5970 (17)
S5···H9C2.6700C7···C7xviii3.5970 (17)
O8···Br13.114 (3)C7···C7xix3.5970 (17)
O8···C4xii3.352 (4)C7···C7xv3.5970 (17)
O8···C4xiii3.352 (4)C9···C9xx3.467 (6)
O8···Br1ii3.155 (3)C9···C9xxi3.467 (6)
O8···Br1iv3.155 (3)H4···O8xvi2.4300
O8···H4xii2.4300H4···O8xvii2.4300
O8···H4xiii2.4300H9A···O8xviii2.7600
O8···H9Axiv2.7600H9A···O8xv2.7600
O8···H9Axv2.7600H9C···S52.6700
C3···C3x3.4158 (11)
C4—S5—C692.36 (16)C7—C9—H9B109.00
Br1—C2—C3120.8 (2)C7—C9—H9C109.00
Br1—C2—C6125.7 (2)C7—C9—H9Ai109.00
C3—C2—C6113.5 (3)C7—C9—H9Bi109.00
C2—C3—C4112.3 (3)C7—C9—H9Ci109.00
S5—C4—C3111.8 (2)H9A—C9—H9B109.00
S5—C6—C2110.0 (2)H9A—C9—H9C109.00
S5—C6—C7120.1 (2)H9A—C9—H9Ai138.00
C2—C6—C7129.9 (2)H9A—C9—H9Bi71.00
O8—C7—C6121.3 (3)H9B—C9—H9C109.00
O8—C7—C9120.8 (3)H9Ai—C9—H9B71.00
C6—C7—C9118.0 (2)H9B—C9—H9Ci138.00
C2—C3—H3124.00H9Bi—C9—H9C138.00
C4—C3—H3124.00H9C—C9—H9Ci71.00
S5—C4—H4124.00H9Ai—C9—H9Bi109.00
C3—C4—H4124.00H9Ai—C9—H9Ci109.00
C7—C9—H9A109.00H9Bi—C9—H9Ci109.00
C6—S5—C4—C30.00C3—C2—C6—S50.00
C4—S5—C6—C20.00C3—C2—C6—C7180.00
C4—S5—C6—C7−180.00C2—C3—C4—S50.00
Br1—C2—C3—C4−180.00S5—C6—C7—O8−180.00
C6—C2—C3—C40.00S5—C6—C7—C90.00
Br1—C2—C6—S5180.00C2—C6—C7—O80.00
Br1—C2—C6—C70.00C2—C6—C7—C9−180.00

Symmetry codes: (i) −x, y, z; (ii) x, −y, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y, −z+1; (v) x, y−1/2, −z+1/2; (vi) x+1/2, y, −z+1/2; (vii) −x, y+1/2, −z+1/2; (viii) x, y+1/2, −z+1/2; (ix) x−1/2, y, −z+1/2; (x) −x−1/2, y, −z+1/2; (xi) −x+1/2, y, −z+1/2; (xii) −x, −y+1/2, z+1/2; (xiii) x, −y+1/2, z+1/2; (xiv) x−1/2, −y+1/2, −z+1; (xv) −x+1/2, −y+1/2, −z+1; (xvi) −x, −y+1/2, z−1/2; (xvii) x, −y+1/2, z−1/2; (xviii) x+1/2, −y+1/2, −z+1; (xix) −x−1/2, −y+1/2, −z+1; (xx) x, −y+1, −z+1; (xxi) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O8xvi0.932.433.352 (4)174

Symmetry codes: (xvi) −x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5166).

References

  • Ashalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon Relat. Elem.184, 1904–1919.
  • Bando, S., Satake, S. & Kagano, H. (2010). US Patent No. 7659411 B2.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ito, C. & Furukawa, H. (1990). Chem. Pharm. Bull.38, 1548–1550.
  • Lutz, G. B., Thomas, S. & Hans-Hartwig, O. (2005). Monatsh. Chem.136, 635–653.
  • Nakayama, J., Konishi, T., Ishii, A. & Hoshino, M. (1989). Bull. Chem. Soc. Jpn, 62, 2608–2612.
  • Pelly, S. C., Parkinson, C. J., van Otterlo, W. A. L. & de Koning, C. B. (2005). J. Org. Chem.70, 10474–10481. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yasuhara, A., Suzuki, N. & Sakamoto, T. (2002). Chem. Pharm. Bull.50, 143–145. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography